def clean_labeled_segmentation(fname_labeled_seg, fname_seg, fname_labeled_seg_new): """ Clean labeled segmentation by: (i) removing voxels in segmentation_labeled that are not in segmentation and (ii) adding voxels in segmentation that are not in segmentation_labeled :param fname_labeled_seg: :param fname_seg: :param fname_labeled_seg_new: output :return: none """ # remove voxels in segmentation_labeled that are not in segmentation img_labeled_seg = Image(fname_labeled_seg) img_seg = Image(fname_seg) data_labeled_seg_mul = img_labeled_seg.data * img_seg.data # dilate to add voxels in segmentation that are not in segmentation_labeled data_labeled_seg_dil = dilate(img_labeled_seg.data, [2]) data_labeled_seg_mul_bin = data_labeled_seg_mul > 0 data_diff = img_seg.data - data_labeled_seg_mul_bin ind_nonzero = np.where(data_diff) img_labeled_seg_corr = img_labeled_seg.copy() img_labeled_seg_corr.data = data_labeled_seg_mul for i_vox in range(len(ind_nonzero[0])): # assign closest label value for this voxel ix, iy, iz = ind_nonzero[0][i_vox], ind_nonzero[1][i_vox], ind_nonzero[ 2][i_vox] img_labeled_seg_corr.data[ix, iy, iz] = data_labeled_seg_dil[ix, iy, iz] # save new label file (overwrite) img_labeled_seg_corr.absolutepath = fname_labeled_seg_new img_labeled_seg_corr.save()
def create_label_z(fname_seg, z, value): """ Create a label at coordinates x_center, y_center, z :param fname_seg: segmentation :param z: int :return: fname_label """ fname_label = 'labelz.nii.gz' nii = Image(fname_seg) orientation_origin = nii.change_orientation( 'RPI') # change orientation to RPI nx, ny, nz, nt, px, py, pz, pt = nii.dim # Get dimensions # find x and y coordinates of the centerline at z using center of mass from scipy.ndimage.measurements import center_of_mass x, y = center_of_mass(nii.data[:, :, z]) x, y = int(round(x)), int(round(y)) nii.data[:, :, :] = 0 nii.data[x, y, z] = value # dilate label to prevent it from disappearing due to nearestneighbor interpolation from sct_maths import dilate nii.data = dilate(nii.data, [3]) nii.setFileName(fname_label) nii.change_orientation( orientation_origin) # put back in original orientation nii.save() return fname_label
def create_label_z(fname_seg, z, value): """ Create a label at coordinates x_center, y_center, z :param fname_seg: segmentation :param z: int :return: fname_label """ fname_label = 'labelz.nii.gz' nii = Image(fname_seg) orientation_origin = nii.change_orientation('RPI') # change orientation to RPI nx, ny, nz, nt, px, py, pz, pt = nii.dim # Get dimensions # find x and y coordinates of the centerline at z using center of mass from scipy.ndimage.measurements import center_of_mass x, y = center_of_mass(nii.data[:, :, z]) x, y = int(round(x)), int(round(y)) nii.data[:, :, :] = 0 nii.data[x, y, z] = value # dilate label to prevent it from disappearing due to nearestneighbor interpolation from sct_maths import dilate nii.data = dilate(nii.data, [3]) nii.setFileName(fname_label) nii.change_orientation(orientation_origin) # put back in original orientation nii.save() return fname_label
def create_label_z(fname_seg, z, value, fname_labelz='labelz.nii.gz'): """ Create a label at coordinates x_center, y_center, z :param fname_seg: segmentation :param z: int :param fname_labelz: string file name of output label :return: fname_labelz """ nii = Image(fname_seg) orientation_origin = nii.orientation nii = nii.change_orientation("RPI") nx, ny, nz, nt, px, py, pz, pt = nii.dim # Get dimensions # find x and y coordinates of the centerline at z using center of mass x, y = center_of_mass(np.array(nii.data[:, :, z])) x, y = int(np.round(x)), int(np.round(y)) nii.data[:, :, :] = 0 nii.data[x, y, z] = value # dilate label to prevent it from disappearing due to nearestneighbor interpolation from sct_maths import dilate nii.data = dilate(nii.data, [3]) nii.change_orientation( orientation_origin) # put back in original orientation nii.save(fname_labelz) return fname_labelz
def main(args=None): # initializations initz = '' initcenter = '' fname_initlabel = '' file_labelz = 'labelz.nii.gz' param = Param() # check user arguments if not args: args = sys.argv[1:] # Get parser info parser = get_parser() arguments = parser.parse(args) fname_in = os.path.abspath(arguments["-i"]) fname_seg = os.path.abspath(arguments['-s']) contrast = arguments['-c'] path_template = arguments['-t'] scale_dist = arguments['-scale-dist'] if '-ofolder' in arguments: path_output = arguments['-ofolder'] else: path_output = os.curdir param.path_qc = arguments.get("-qc", None) if '-discfile' in arguments: fname_disc = os.path.abspath(arguments['-discfile']) else: fname_disc = None if '-initz' in arguments: initz = arguments['-initz'] if '-initcenter' in arguments: initcenter = arguments['-initcenter'] # if user provided text file, parse and overwrite arguments if '-initfile' in arguments: file = open(arguments['-initfile'], 'r') initfile = ' ' + file.read().replace('\n', '') arg_initfile = initfile.split(' ') for idx_arg, arg in enumerate(arg_initfile): if arg == '-initz': initz = [int(x) for x in arg_initfile[idx_arg + 1].split(',')] if arg == '-initcenter': initcenter = int(arg_initfile[idx_arg + 1]) if '-initlabel' in arguments: # get absolute path of label fname_initlabel = os.path.abspath(arguments['-initlabel']) if '-param' in arguments: param.update(arguments['-param'][0]) verbose = int(arguments.get('-v')) sct.init_sct(log_level=verbose, update=True) # Update log level remove_temp_files = int(arguments['-r']) denoise = int(arguments['-denoise']) laplacian = int(arguments['-laplacian']) path_tmp = sct.tmp_create(basename="label_vertebrae", verbose=verbose) # Copying input data to tmp folder sct.printv('\nCopying input data to tmp folder...', verbose) Image(fname_in).save(os.path.join(path_tmp, "data.nii")) Image(fname_seg).save(os.path.join(path_tmp, "segmentation.nii")) # Go go temp folder curdir = os.getcwd() os.chdir(path_tmp) # Straighten spinal cord sct.printv('\nStraighten spinal cord...', verbose) # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time) cache_sig = sct.cache_signature( input_files=[fname_in, fname_seg], ) cachefile = os.path.join(curdir, "straightening.cache") if sct.cache_valid(cachefile, cache_sig) and os.path.isfile(os.path.join(curdir, "warp_curve2straight.nii.gz")) and os.path.isfile(os.path.join(curdir, "warp_straight2curve.nii.gz")) and os.path.isfile(os.path.join(curdir, "straight_ref.nii.gz")): # if they exist, copy them into current folder sct.printv('Reusing existing warping field which seems to be valid', verbose, 'warning') sct.copy(os.path.join(curdir, "warp_curve2straight.nii.gz"), 'warp_curve2straight.nii.gz') sct.copy(os.path.join(curdir, "warp_straight2curve.nii.gz"), 'warp_straight2curve.nii.gz') sct.copy(os.path.join(curdir, "straight_ref.nii.gz"), 'straight_ref.nii.gz') # apply straightening s, o = sct.run(['sct_apply_transfo', '-i', 'data.nii', '-w', 'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o', 'data_straight.nii']) else: cmd = ['sct_straighten_spinalcord', '-i', 'data.nii', '-s', 'segmentation.nii', '-r', str(remove_temp_files)] if param.path_qc is not None and os.environ.get("SCT_RECURSIVE_QC", None) == "1": cmd += ['-qc', param.path_qc] s, o = sct.run(cmd) sct.cache_save(cachefile, cache_sig) # resample to 0.5mm isotropic to match template resolution sct.printv('\nResample to 0.5mm isotropic...', verbose) s, o = sct.run(['sct_resample', '-i', 'data_straight.nii', '-mm', '0.5x0.5x0.5', '-x', 'linear', '-o', 'data_straightr.nii'], verbose=verbose) # Apply straightening to segmentation # N.B. Output is RPI sct.printv('\nApply straightening to segmentation...', verbose) sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % ('segmentation.nii', 'data_straightr.nii', 'warp_curve2straight.nii.gz', 'segmentation_straight.nii', 'Linear'), verbose=verbose, is_sct_binary=True, ) # Threshold segmentation at 0.5 sct.run(['sct_maths', '-i', 'segmentation_straight.nii', '-thr', '0.5', '-o', 'segmentation_straight.nii'], verbose) # If disc label file is provided, label vertebrae using that file instead of automatically if fname_disc: # Apply straightening to disc-label sct.printv('\nApply straightening to disc labels...', verbose) sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % (fname_disc, 'data_straightr.nii', 'warp_curve2straight.nii.gz', 'labeldisc_straight.nii.gz', 'NearestNeighbor'), verbose=verbose, is_sct_binary=True, ) label_vert('segmentation_straight.nii', 'labeldisc_straight.nii.gz', verbose=1) else: # create label to identify disc sct.printv('\nCreate label to identify disc...', verbose) fname_labelz = os.path.join(path_tmp, file_labelz) if initz or initcenter: if initcenter: # find z centered in FOV nii = Image('segmentation.nii').change_orientation("RPI") nx, ny, nz, nt, px, py, pz, pt = nii.dim # Get dimensions z_center = int(np.round(nz / 2)) # get z_center initz = [z_center, initcenter] # create single label and output as labels.nii.gz label = ProcessLabels('segmentation.nii', fname_output='tmp.labelz.nii.gz', coordinates=['{},{}'.format(initz[0], initz[1])]) im_label = label.process('create-seg') im_label.data = sct_maths.dilate(im_label.data, [3]) # TODO: create a dilation method specific to labels, # which does not apply a convolution across all voxels (highly inneficient) im_label.save(fname_labelz) elif fname_initlabel: import sct_label_utils # subtract "1" to label value because due to legacy, in this code the disc C2-C3 has value "2", whereas in the # recent version of SCT it is defined as "3". Therefore, when asking the user to define a label, we point to the # new definition of labels (i.e., C2-C3 = 3). sct_label_utils.main(['-i', fname_initlabel, '-add', '-1', '-o', fname_labelz]) else: # automatically finds C2-C3 disc im_data = Image('data.nii') im_seg = Image('segmentation.nii') im_label_c2c3 = detect_c2c3(im_data, im_seg, contrast) ind_label = np.where(im_label_c2c3.data) if not np.size(ind_label) == 0: # subtract "1" to label value because due to legacy, in this code the disc C2-C3 has value "2", whereas in the # recent version of SCT it is defined as "3". im_label_c2c3.data[ind_label] = 2 else: sct.printv('Automatic C2-C3 detection failed. Please provide manual label with sct_label_utils', 1, 'error') im_label_c2c3.save(fname_labelz) # dilate label so it is not lost when applying warping sct_maths.main(['-i', fname_labelz, '-dilate', '3', '-o', fname_labelz]) # Apply straightening to z-label sct.printv('\nAnd apply straightening to label...', verbose) sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % (file_labelz, 'data_straightr.nii', 'warp_curve2straight.nii.gz', 'labelz_straight.nii.gz', 'NearestNeighbor'), verbose=verbose, is_sct_binary=True, ) # get z value and disk value to initialize labeling sct.printv('\nGet z and disc values from straight label...', verbose) init_disc = get_z_and_disc_values_from_label('labelz_straight.nii.gz') sct.printv('.. ' + str(init_disc), verbose) # denoise data if denoise: sct.printv('\nDenoise data...', verbose) sct.run(['sct_maths', '-i', 'data_straightr.nii', '-denoise', 'h=0.05', '-o', 'data_straightr.nii'], verbose) # apply laplacian filtering if laplacian: sct.printv('\nApply Laplacian filter...', verbose) sct.run(['sct_maths', '-i', 'data_straightr.nii', '-laplacian', '1', '-o', 'data_straightr.nii'], verbose) # detect vertebral levels on straight spinal cord vertebral_detection('data_straightr.nii', 'segmentation_straight.nii', contrast, param, init_disc=init_disc, verbose=verbose, path_template=path_template, path_output=path_output, scale_dist=scale_dist) # un-straighten labeled spinal cord sct.printv('\nUn-straighten labeling...', verbose) sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % ('segmentation_straight_labeled.nii', 'segmentation.nii', 'warp_straight2curve.nii.gz', 'segmentation_labeled.nii', 'NearestNeighbor'), verbose=verbose, is_sct_binary=True, ) # Clean labeled segmentation sct.printv('\nClean labeled segmentation (correct interpolation errors)...', verbose) clean_labeled_segmentation('segmentation_labeled.nii', 'segmentation.nii', 'segmentation_labeled.nii') # label discs sct.printv('\nLabel discs...', verbose) label_discs('segmentation_labeled.nii', verbose=verbose) # come back os.chdir(curdir) # Generate output files path_seg, file_seg, ext_seg = sct.extract_fname(fname_seg) fname_seg_labeled = os.path.join(path_output, file_seg + '_labeled' + ext_seg) sct.printv('\nGenerate output files...', verbose) sct.generate_output_file(os.path.join(path_tmp, "segmentation_labeled.nii"), fname_seg_labeled) sct.generate_output_file(os.path.join(path_tmp, "segmentation_labeled_disc.nii"), os.path.join(path_output, file_seg + '_labeled_discs' + ext_seg)) # copy straightening files in case subsequent SCT functions need them sct.generate_output_file(os.path.join(path_tmp, "warp_curve2straight.nii.gz"), os.path.join(path_output, "warp_curve2straight.nii.gz"), verbose) sct.generate_output_file(os.path.join(path_tmp, "warp_straight2curve.nii.gz"), os.path.join(path_output, "warp_straight2curve.nii.gz"), verbose) sct.generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"), os.path.join(path_output, "straight_ref.nii.gz"), verbose) # Remove temporary files if remove_temp_files == 1: sct.printv('\nRemove temporary files...', verbose) sct.rmtree(path_tmp) # Generate QC report if param.path_qc is not None: path_qc = os.path.abspath(param.path_qc) qc_dataset = arguments.get("-qc-dataset", None) qc_subject = arguments.get("-qc-subject", None) labeled_seg_file = os.path.join(path_output, file_seg + '_labeled' + ext_seg) generate_qc(fname_in, fname_seg=labeled_seg_file, args=args, path_qc=os.path.abspath(path_qc), dataset=qc_dataset, subject=qc_subject, process='sct_label_vertebrae') sct.display_viewer_syntax([fname_in, fname_seg_labeled], colormaps=['', 'subcortical'], opacities=['1', '0.5'])
def main(args=None): # initializations initz = '' initcenter = '' fname_initlabel = '' file_labelz = 'labelz.nii.gz' param = Param() # check user arguments if not args: args = sys.argv[1:] # Get parser info parser = get_parser() arguments = parser.parse(args) fname_in = os.path.abspath(arguments["-i"]) fname_seg = os.path.abspath(arguments['-s']) contrast = arguments['-c'] path_template = os.path.abspath(arguments['-t']) scale_dist = arguments['-scale-dist'] if '-ofolder' in arguments: path_output = arguments['-ofolder'] else: path_output = os.curdir param.path_qc = arguments.get("-qc", None) if '-discfile' in arguments: fname_disc = os.path.abspath(arguments['-discfile']) else: fname_disc = None if '-initz' in arguments: initz = arguments['-initz'] if '-initcenter' in arguments: initcenter = arguments['-initcenter'] # if user provided text file, parse and overwrite arguments if '-initfile' in arguments: file = open(arguments['-initfile'], 'r') initfile = ' ' + file.read().replace('\n', '') arg_initfile = initfile.split(' ') for idx_arg, arg in enumerate(arg_initfile): if arg == '-initz': initz = [int(x) for x in arg_initfile[idx_arg + 1].split(',')] if arg == '-initcenter': initcenter = int(arg_initfile[idx_arg + 1]) if '-initlabel' in arguments: # get absolute path of label fname_initlabel = os.path.abspath(arguments['-initlabel']) if '-param' in arguments: param.update(arguments['-param'][0]) verbose = int(arguments.get('-v')) sct.init_sct(log_level=verbose, update=True) # Update log level remove_temp_files = int(arguments['-r']) denoise = int(arguments['-denoise']) laplacian = int(arguments['-laplacian']) path_tmp = sct.tmp_create(basename="label_vertebrae", verbose=verbose) # Copying input data to tmp folder sct.printv('\nCopying input data to tmp folder...', verbose) Image(fname_in).save(os.path.join(path_tmp, "data.nii")) Image(fname_seg).save(os.path.join(path_tmp, "segmentation.nii")) # Go go temp folder curdir = os.getcwd() os.chdir(path_tmp) # Straighten spinal cord sct.printv('\nStraighten spinal cord...', verbose) # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time) cache_sig = sct.cache_signature(input_files=[fname_in, fname_seg], ) cachefile = os.path.join(curdir, "straightening.cache") if sct.cache_valid(cachefile, cache_sig) and os.path.isfile( os.path.join( curdir, "warp_curve2straight.nii.gz")) and os.path.isfile( os.path.join( curdir, "warp_straight2curve.nii.gz")) and os.path.isfile( os.path.join(curdir, "straight_ref.nii.gz")): # if they exist, copy them into current folder sct.printv('Reusing existing warping field which seems to be valid', verbose, 'warning') sct.copy(os.path.join(curdir, "warp_curve2straight.nii.gz"), 'warp_curve2straight.nii.gz') sct.copy(os.path.join(curdir, "warp_straight2curve.nii.gz"), 'warp_straight2curve.nii.gz') sct.copy(os.path.join(curdir, "straight_ref.nii.gz"), 'straight_ref.nii.gz') # apply straightening s, o = sct.run([ 'sct_apply_transfo', '-i', 'data.nii', '-w', 'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o', 'data_straight.nii' ]) else: sct_straighten_spinalcord.main(args=[ '-i', 'data.nii', '-s', 'segmentation.nii', '-r', str(remove_temp_files), '-v', str(verbose), ]) sct.cache_save(cachefile, cache_sig) # resample to 0.5mm isotropic to match template resolution sct.printv('\nResample to 0.5mm isotropic...', verbose) s, o = sct.run([ 'sct_resample', '-i', 'data_straight.nii', '-mm', '0.5x0.5x0.5', '-x', 'linear', '-o', 'data_straightr.nii' ], verbose=verbose) # Apply straightening to segmentation # N.B. Output is RPI sct.printv('\nApply straightening to segmentation...', verbose) sct.run( 'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % ('segmentation.nii', 'data_straightr.nii', 'warp_curve2straight.nii.gz', 'segmentation_straight.nii', 'Linear'), verbose=verbose, is_sct_binary=True, ) # Threshold segmentation at 0.5 sct.run([ 'sct_maths', '-i', 'segmentation_straight.nii', '-thr', '0.5', '-o', 'segmentation_straight.nii' ], verbose) # If disc label file is provided, label vertebrae using that file instead of automatically if fname_disc: # Apply straightening to disc-label sct.printv('\nApply straightening to disc labels...', verbose) sct.run( 'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % (fname_disc, 'data_straightr.nii', 'warp_curve2straight.nii.gz', 'labeldisc_straight.nii.gz', 'NearestNeighbor'), verbose=verbose, is_sct_binary=True, ) label_vert('segmentation_straight.nii', 'labeldisc_straight.nii.gz', verbose=1) else: # create label to identify disc sct.printv('\nCreate label to identify disc...', verbose) fname_labelz = os.path.join(path_tmp, file_labelz) if initz or initcenter: if initcenter: # find z centered in FOV nii = Image('segmentation.nii').change_orientation("RPI") nx, ny, nz, nt, px, py, pz, pt = nii.dim # Get dimensions z_center = int(np.round(nz / 2)) # get z_center initz = [z_center, initcenter] # create single label and output as labels.nii.gz label = ProcessLabels( 'segmentation.nii', fname_output='tmp.labelz.nii.gz', coordinates=['{},{}'.format(initz[0], initz[1])]) im_label = label.process('create-seg') im_label.data = sct_maths.dilate( im_label.data, [3]) # TODO: create a dilation method specific to labels, # which does not apply a convolution across all voxels (highly inneficient) im_label.save(fname_labelz) elif fname_initlabel: import sct_label_utils # subtract "1" to label value because due to legacy, in this code the disc C2-C3 has value "2", whereas in the # recent version of SCT it is defined as "3". Therefore, when asking the user to define a label, we point to the # new definition of labels (i.e., C2-C3 = 3). sct_label_utils.main( ['-i', fname_initlabel, '-add', '-1', '-o', fname_labelz]) else: # automatically finds C2-C3 disc im_data = Image('data.nii') im_seg = Image('segmentation.nii') if not remove_temp_files: # because verbose is here also used for keeping temp files verbose_detect_c2c3 = 2 else: verbose_detect_c2c3 = 0 im_label_c2c3 = detect_c2c3(im_data, im_seg, contrast, verbose=verbose_detect_c2c3) ind_label = np.where(im_label_c2c3.data) if not np.size(ind_label) == 0: # subtract "1" to label value because due to legacy, in this code the disc C2-C3 has value "2", whereas in the # recent version of SCT it is defined as "3". im_label_c2c3.data[ind_label] = 2 else: sct.printv( 'Automatic C2-C3 detection failed. Please provide manual label with sct_label_utils', 1, 'error') sys.exit() im_label_c2c3.save(fname_labelz) # dilate label so it is not lost when applying warping sct_maths.main( ['-i', fname_labelz, '-dilate', '3', '-o', fname_labelz]) # Apply straightening to z-label sct.printv('\nAnd apply straightening to label...', verbose) sct.run( 'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % (file_labelz, 'data_straightr.nii', 'warp_curve2straight.nii.gz', 'labelz_straight.nii.gz', 'NearestNeighbor'), verbose=verbose, is_sct_binary=True, ) # get z value and disk value to initialize labeling sct.printv('\nGet z and disc values from straight label...', verbose) init_disc = get_z_and_disc_values_from_label('labelz_straight.nii.gz') sct.printv('.. ' + str(init_disc), verbose) # denoise data if denoise: sct.printv('\nDenoise data...', verbose) sct.run([ 'sct_maths', '-i', 'data_straightr.nii', '-denoise', 'h=0.05', '-o', 'data_straightr.nii' ], verbose) # apply laplacian filtering if laplacian: sct.printv('\nApply Laplacian filter...', verbose) sct.run([ 'sct_maths', '-i', 'data_straightr.nii', '-laplacian', '1', '-o', 'data_straightr.nii' ], verbose) # detect vertebral levels on straight spinal cord vertebral_detection('data_straightr.nii', 'segmentation_straight.nii', contrast, param, init_disc=init_disc, verbose=verbose, path_template=path_template, path_output=path_output, scale_dist=scale_dist) # un-straighten labeled spinal cord sct.printv('\nUn-straighten labeling...', verbose) sct.run( 'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % ('segmentation_straight_labeled.nii', 'segmentation.nii', 'warp_straight2curve.nii.gz', 'segmentation_labeled.nii', 'NearestNeighbor'), verbose=verbose, is_sct_binary=True, ) # Clean labeled segmentation sct.printv( '\nClean labeled segmentation (correct interpolation errors)...', verbose) clean_labeled_segmentation('segmentation_labeled.nii', 'segmentation.nii', 'segmentation_labeled.nii') # label discs sct.printv('\nLabel discs...', verbose) label_discs('segmentation_labeled.nii', verbose=verbose) # come back os.chdir(curdir) # Generate output files path_seg, file_seg, ext_seg = sct.extract_fname(fname_seg) fname_seg_labeled = os.path.join(path_output, file_seg + '_labeled' + ext_seg) sct.printv('\nGenerate output files...', verbose) sct.generate_output_file( os.path.join(path_tmp, "segmentation_labeled.nii"), fname_seg_labeled) sct.generate_output_file( os.path.join(path_tmp, "segmentation_labeled_disc.nii"), os.path.join(path_output, file_seg + '_labeled_discs' + ext_seg)) # copy straightening files in case subsequent SCT functions need them sct.generate_output_file( os.path.join(path_tmp, "warp_curve2straight.nii.gz"), os.path.join(path_output, "warp_curve2straight.nii.gz"), verbose) sct.generate_output_file( os.path.join(path_tmp, "warp_straight2curve.nii.gz"), os.path.join(path_output, "warp_straight2curve.nii.gz"), verbose) sct.generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"), os.path.join(path_output, "straight_ref.nii.gz"), verbose) # Remove temporary files if remove_temp_files == 1: sct.printv('\nRemove temporary files...', verbose) sct.rmtree(path_tmp) # Generate QC report if param.path_qc is not None: path_qc = os.path.abspath(param.path_qc) qc_dataset = arguments.get("-qc-dataset", None) qc_subject = arguments.get("-qc-subject", None) labeled_seg_file = os.path.join(path_output, file_seg + '_labeled' + ext_seg) generate_qc(fname_in, fname_seg=labeled_seg_file, args=args, path_qc=os.path.abspath(path_qc), dataset=qc_dataset, subject=qc_subject, process='sct_label_vertebrae') sct.display_viewer_syntax([fname_in, fname_seg_labeled], colormaps=['', 'subcortical'], opacities=['1', '0.5'])