def test_cumsum(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) Ac = df.A.cumsum() return Ac.sum() hpat_func = sdc.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_array_OneDs(), 2) self.assertEqual(count_parfor_REPs(), 0) self.assertEqual(count_parfor_OneDs(), 2) self.assertTrue(dist_IR_contains('dist_cumsum'))
def test_column_distribution(self): # make sure all column calls are distributed def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) df.A.fillna(5.0, inplace=True) DF = df.A.fillna(5.0) s = DF.sum() m = df.A.mean() v = df.A.var() t = df.A.std() Ac = df.A.cumsum() return Ac.sum() + s + m + v + t hpat_func = sdc.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) self.assertTrue(dist_IR_contains('dist_cumsum'))