def prop1d(mode, dielectric, max_harmonic, max_power, has_main_phase=False, optimize_z=True): propagator1d = prop.ParaxialPerpendicularPropagator1D( p1d, dielectric, mode, direction=-1, max_harmonic=max_harmonic, max_power=max_power) E = propagator1d.propagate(omega, x_start, x_end, nx, E_start, Y1D, Z1D, mute=False, debug_mode=True, include_main_phase=has_main_phase, optimize_z=optimize_z) return (E, propagator1d)
def error_1d(nx_power_min, nx_power_max, nx_power_step, mode='O', dielectric=dt.ColdElectronColdIon, max_harmonic=2, max_power=2, has_main_phase=False): """ nx_step: the step size in nx power """ nx_power_array = np.arange(nx_power_min, nx_power_max + 1, nx_power_step) nx_array = 2**nx_power_array x_stepsize = np.float(np.abs(x_end - x_start)) / nx_array p1 = prop.ParaxialPerpendicularPropagator1D(p1d, dielectric, mode, direction=-1, max_harmonic=max_harmonic, max_power=max_power) max_abs_err = np.zeros_like(nx_array, dtype='float') max_rel_err = np.zeros_like(max_abs_err) tstart = time.clock() E_mark = p1.propagate(omega, x_start, x_end, nx_array[-1], E_start, Y1D, Z1D, include_main_phase=has_main_phase) for i, ni in enumerate(nx_array[:-1]): Ei = p1.propagate(omega, x_start, x_end, ni, E_start, Y1D, Z1D, include_main_phase=has_main_phase) step = nx_array[-1] / nx_array[i] E_marki = E_mark[..., ::step] abs_err = np.abs(Ei - E_marki) max_abs_err[i] = np.max(abs_err) rel_idx = np.abs(E_marki) > 1e-3 * np.max(np.abs(E_marki)) max_rel_err[i] = np.max(np.abs(abs_err[rel_idx] / E_marki[rel_idx])) tend = time.clock() print('Total time used: {:.4}s'.format(tend - tstart)) return max_abs_err, max_rel_err, nx_array, x_stepsize
def compare_1d2d(mode, dielectric, max_harmonic, max_power, has_main_phase=False): propagator1d = prop.ParaxialPerpendicularPropagator1D( p1d, dielectric, mode, direction=-1, max_harmonic=max_harmonic, max_power=max_power) E1 = propagator1d.propagate(omega, x_start, x_end, nx, E_start, Y1D, Z1D, include_main_phase=has_main_phase) propagator2d_uni = prop.ParaxialPerpendicularPropagator2D( p2d_uni, dielectric, mode, direction=-1, ray_y=0, max_harmonic=max_harmonic, max_power=max_power) E2d_uni = propagator2d_uni.propagate(omega, x_start, x_end, nx, E_start, Y1D, Z1D, include_main_phase=has_main_phase) return (E1, propagator1d, E2d_uni, propagator2d_uni)
def benchmark_1d2d(nx_power_min, nx_power_max, nx_step, mode='O', dielectric=dt.ColdElectronColdIon, max_harmonic=2, max_power=2, has_main_phase=False): """calculate error convergence against x step size :param float nx_min: log2(nx) minimum, start point of log mesh of total x steps. :param float nx_max: log2(nx) maximum, end point of log mesh of total x steps. :param int nx_step: step size in power array :param string mode: polarization mode :param dielectric: dielectric tensor type :type dielectric: :py:class:`sdp.Plamsa.DielectricTensor.Dielectric` :param int max_harmonic: highest harmonic resonance included :param int max_power: highest FLR effect power included """ tstart = time.clock() nx_power = np.arange(nx_power_min, nx_power_max + 1, nx_step) nx_array = 2**nx_power x_stepsize = np.float(np.abs(x_end - x_start)) / nx_array p1 = prop.ParaxialPerpendicularPropagator1D(p1d, dielectric, mode, direction=-1, max_harmonic=max_harmonic, max_power=max_power) p2 = prop.ParaxialPerpendicularPropagator2D(p2d_uni, dielectric, mode, direction=-1, ray_y=0, max_harmonic=max_harmonic, max_power=max_power) max_abs_err = np.empty_like(nx_array, dtype='float') max_rel_err = np.empty_like(max_abs_err) for i, ni in enumerate(nx_array): E1 = p1.propagate(omega, x_start, x_end, ni, E_start, Y1D, Z1D, include_main_phase=has_main_phase) E2 = p2.propagate(omega, x_start, x_end, ni, E_start, Y1D, Z1D, include_main_phase=has_main_phase) abs_err = np.abs(E2 - E1) max_abs_err[i] = np.max(abs_err) rel_idx = np.abs(E1) > 1e-3 * np.max(np.abs(E1)) max_rel_err[i] = np.max(np.abs(abs_err[rel_idx] / E1[rel_idx])) print('Total time: {:.4}s'.format(time.clock() - tstart)) return max_abs_err, max_rel_err, nx_array, x_stepsize