예제 #1
0
파일: test_base.py 프로젝트: csala/SDV
    def test__validate_constraint_columns_warning(self):
        """Test the ``Constraint._validate_constraint_columns`` method.

        Expect that ``_validate_constraint_columns`` throws a warning
        when missing columns and not using columns model.

        Setup:
        - Mock the constraint columns to have one more column than the table_data: ('a', 'b').
        - Mock the ``_columns_model`` to be False.
        - Mock the ``_sample_constraint_columns`` to return a dataframe.
        Input:
        - table_data with one column ('a').
        Output:
        - table_data
        Side Effects:
        - A UserWarning is thrown.
        """
        # Setup
        constraint = Mock()
        constraint.constraint_columns = ['a', 'b']
        constraint._columns_model = False
        constraint._sample_constraint_columns.return_value = pd.DataFrame(
            {'a': [0, 1, 2]})

        table_data = pd.DataFrame({'a': [0, 1, 2]})

        # Run and assert
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter('always')
            Constraint._validate_constraint_columns(constraint, table_data)
            assert len(w) == 1
            assert issubclass(w[0].category, UserWarning)
예제 #2
0
파일: test_base.py 프로젝트: csala/SDV
    def test_fit_trains_column_model(self, ht_mock, gm_mock):
        """Test the ``Constraint.fit`` method trains the column model.

        When ``fit_columns_model`` is True and there are multiple ``constraint_columns``,
        the ``Constraint.fit`` method is expected to:
        - Call ``_fit`` method.
        - Create ``_hyper_transformer``.
        - Create ``_column_model`` and train it.

        Input:
        - Table data (pandas.DataFrame)
        """
        # Setup
        table_data = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
        instance = Constraint(handling_strategy='transform',
                              fit_columns_model=True)
        instance.constraint_columns = ('a', 'b')

        # Run
        instance.fit(table_data)

        # Assert
        gm_mock.return_value.fit.assert_called_once()
        calls = ht_mock.return_value.fit_transform.mock_calls
        args = calls[0][1]
        assert len(calls) == 1
        pd.testing.assert_frame_equal(args[0], table_data)
예제 #3
0
파일: test_base.py 프로젝트: sdv-dev/SDV
    def test_transform__transform_errors(self):
        """Test that the ``transform`` method handles any errors.

        If the ``_transform`` method raises an error, the error should be raised.

        Setup:
            - Make ``_transform`` raise an error.

        Input:
            - ``pandas.DataFrame``.

        Output:
            - Same ``pandas.DataFrame``.

        Side effects:
            - Exception should be raised
        """
        # Setup
        instance = Constraint()
        instance._transform = Mock()
        instance._transform.side_effect = Exception()
        data = pd.DataFrame({'a': [1, 2, 3]})

        # Run / Assert
        with pytest.raises(Exception):
            instance.transform(data)
예제 #4
0
파일: test_table.py 프로젝트: csala/SDV
    def test__prepare_constraints_invalid_order_raises_exception(
            self, from_dict_mock):
        """Test the ``_prepare_constraints`` method validates the constraint order.

        If one constraint has ``rebuild_columns`` that are in a later
        constraint's ``constraint_columns``, an exception should be raised.

        Input:
        - List of constraints with some having ``rebuild_columns``
        that are in a later constraint's ``constraint_columns``.
        Side Effect:
        - Exception should be raised.
        """
        # Setup
        constraint1 = Constraint(handling_strategy='reject_sampling')
        constraint2 = Constraint(handling_strategy='reject_sampling')
        constraint3 = Constraint(handling_strategy='transform')
        constraint4 = Constraint(handling_strategy='transform')
        constraints = [constraint1, constraint2, constraint3, constraint4]
        constraint3.rebuild_columns = ['a', 'd']
        constraint4.constraint_columns = ['a', 'b', 'c']
        constraint4.rebuild_columns = ['a']
        from_dict_mock.side_effect = [
            constraint1, constraint2, constraint3, constraint4
        ]

        # Run
        with pytest.raises(Exception):
            Table._prepare_constraints(constraints)
예제 #5
0
파일: test_table.py 프로젝트: csala/SDV
    def test__prepare_constraints_sorts_constraints_none_rebuild_columns(
            self, from_dict_mock):
        """Test that ``_prepare_constraints`` method sorts constraints.

        The ``_prepare_constraints`` method should sort constraints with None as
        ``rebuild_columns`` before those that have them.

        Input:
        - list of constraints with some having None as ``rebuild_columns``
        listed after those with ``rebuild_columns``.
        Output:
        - List of constraints sorted properly.
        """
        # Setup
        constraint1 = Constraint(handling_strategy='transform')
        constraint2 = Constraint(handling_strategy='transform')
        constraint3 = Constraint(handling_strategy='reject_sampling')
        constraints = [constraint1, constraint2, constraint3]
        constraint1.rebuild_columns = ['a']
        constraint2.rebuild_columns = ['b']
        constraint3.rebuild_columns = None
        from_dict_mock.side_effect = [constraint1, constraint2, constraint3]

        # Run
        sorted_constraints = Table._prepare_constraints(constraints)

        # Asserts
        assert sorted_constraints == [constraint3, constraint1, constraint2]
예제 #6
0
파일: test_table.py 프로젝트: csala/SDV
    def test__prepare_constraints_validates_constraint_order(
            self, from_dict_mock):
        """Test the ``_prepare_constraints`` method validates the constraint order.

        If no constraint has ``rebuild_columns`` that are in a later
        constraint's ``constraint_columns``, no exception should be raised.

        Input:
        - List of constraints with none having ``rebuild_columns``
        that are in a later constraint's ``constraint_columns``.
        Output:
        - Sorted list of constraints.
        """
        # Setup
        constraint1 = Constraint(handling_strategy='reject_sampling')
        constraint2 = Constraint(handling_strategy='reject_sampling')
        constraint3 = Constraint(handling_strategy='transform')
        constraint4 = Constraint(handling_strategy='transform')
        constraints = [constraint1, constraint2, constraint3, constraint4]
        constraint3.rebuild_columns = ['e', 'd']
        constraint4.constraint_columns = ['a', 'b', 'c']
        constraint4.rebuild_columns = ['a']
        from_dict_mock.side_effect = [
            constraint1, constraint2, constraint3, constraint4
        ]

        # Run
        sorted_constraints = Table._prepare_constraints(constraints)

        # Assert
        assert sorted_constraints == constraints
예제 #7
0
    def test_fit(self):
        """Test the ``Constraint.fit`` method.

        The ``Constraint.fit`` method is a no-op method, so nothing needs to happen. We just call
        the method to certify that the interface is right.

        Input:
        - Table data (pandas.DataFrame)
        """
        # Setup
        table_data = pd.DataFrame({'a': [1, 2, 3]})

        # Run
        instance = Constraint(handling_strategy='transform')
        instance.fit(table_data)
예제 #8
0
    def test__identity(self):
        """Test ```Constraint._identity`` method.

        ``_identity`` method should return whatever it is passed.

        Input:
            - anything
        Output:
            - Input
        """
        # Run
        instance = Constraint('all')
        output = instance._identity('input')

        # Asserts
        assert output == 'input'
예제 #9
0
    def test_transform(self):
        """Test the ``Constraint.transform`` method. It is an identity method for completion,
        to be optionally overwritten by subclasses.
        The ``Constraint.transform`` method is expected to:
        - Return the input data unmodified.
        Input:
        - Anything
        Output:
        - Input
        """
        # Run
        instance = Constraint(handling_strategy='transform')
        output = instance.transform('input')

        # Assert
        assert output == 'input'
예제 #10
0
    def _prepare_constraints(constraints):
        constraints = constraints or []
        rebuild_columns = set()
        transform_constraints = []
        reject_sampling_constraints = []
        for constraint in constraints:
            if isinstance(constraint, type):
                constraint = constraint().to_dict()
            elif isinstance(constraint, Constraint):
                constraint = constraint.to_dict()

            constraint = Constraint.from_dict(constraint)

            if not constraint.rebuild_columns:
                reject_sampling_constraints.append(constraint)
            elif rebuild_columns & set(constraint.constraint_columns):
                intersecting_columns = rebuild_columns & set(
                    constraint.constraint_columns)
                raise Exception(
                    'Multiple constraints will modify the same column(s): '
                    f'"{intersecting_columns}", which may lead to the constraint '
                    'being unenforceable. Please use "reject_sampling" as the '
                    '"handling_strategy" instead.')
            else:
                transform_constraints.append(constraint)
                rebuild_columns.update(constraint.rebuild_columns)

        return reject_sampling_constraints + transform_constraints
예제 #11
0
    def test_fit_transform(self):
        """Test the ``Constraint.fit_transform`` method.

        The ``Constraint.fit_transform`` method is expected to:
        - Call the ``fit`` method.
        - Call the ``transform`` method.
        - Return the input data unmodified.

        Input:
        - Anything
        Output:
        - self.transform output
        Side Effects:
        - self.fit is called with input
        - self.transform is called with input
        """
        # Setup
        constraint_mock = Mock()
        constraint_mock.transform.return_value = 'the_transformed_data'

        # Run
        data = 'my_data'
        output = Constraint.fit_transform(constraint_mock, data)

        # Assert
        assert output == 'the_transformed_data'

        constraint_mock.fit.assert_called_once_with('my_data')
        constraint_mock.transform.assert_called_once_with('my_data')
예제 #12
0
파일: test_base.py 프로젝트: sdv-dev/SDV
    def test_filter_valid_with_invalid_index(self):
        """Test the ``Constraint.filter_valid`` method.

        Tests when the is_valid method returns a Series with an invalid index.

        Note: `is_valid.index` can be [0, 1, 5] if, for example, the Series is a subset
        of an original table with 10 rows, but only rows 0/1/5 were selected.

        Input:
        - Table data (pandas.DataFrame)
        Output:
        - Table data, with only the valid rows (pandas.DataFrame)
        """
        # Setup
        table_data = pd.DataFrame({'a': [1, 2, 3]})

        constraint_mock = Mock()
        is_valid = pd.Series([True, True, False])
        is_valid.index = [0, 1, 5]
        constraint_mock.is_valid.return_value = is_valid

        # Run
        out = Constraint.filter_valid(constraint_mock, table_data)

        # Assert
        expected_out = pd.DataFrame({'a': [1, 2]})
        pd.testing.assert_frame_equal(expected_out, out)
예제 #13
0
파일: test_base.py 프로젝트: csala/SDV
    def test_transform_model_enabled_reject_sampling_error(self):
        """Test that the ``Constraint.transform`` method raises an error appropriately.

        If the column model is used but doesn't return valid rows,
        reject sampling should be used to get the valid rows. If it doesn't
        get any valid rows in 100 tries, a ``ValueError`` is raised.

        Setup:
        - The ``_columns_model`` is fixed to always return an empty ``DataFrame``.
        Input:
        - Table with some missing columns.
        Side Effect:
        - ``ValueError`` raised.
        """
        # Setup
        instance = Constraint(handling_strategy='transform')
        instance.constraint_columns = ('a', 'b')
        instance._hyper_transformer = Mock()
        instance._columns_model = Mock()
        transformed_conditions = pd.DataFrame([[1]], columns=['b'])
        instance._columns_model.sample.return_value = pd.DataFrame()
        instance._hyper_transformer.transform.return_value = transformed_conditions
        instance._hyper_transformer.reverse_transform.return_value = pd.DataFrame(
        )

        # Run / Assert
        data = pd.DataFrame([[1, 2], [3, 4]], columns=['b', 'c'])
        with pytest.raises(ValueError):
            instance.transform(data)
예제 #14
0
파일: test_base.py 프로젝트: csala/SDV
    def test_fit(self):
        """Test the ``Constraint.fit`` method.

        The base ``Constraint.fit`` method is expected to:
        - Call ``_fit`` method.

        Input:
        - Table data (pandas.DataFrame)
        """
        # Setup
        table_data = pd.DataFrame({'a': [1, 2, 3]})
        instance = Constraint(handling_strategy='transform',
                              fit_columns_model=False)
        instance._fit = Mock()

        # Run
        instance.fit(table_data)

        # Assert
        instance._fit.assert_called_once_with(table_data)
예제 #15
0
파일: test_base.py 프로젝트: csala/SDV
    def test_fit_gaussian_multivariate_correct_distribution(self, gm_mock):
        """Test the ``GaussianMultivariate`` from the ``Constraint.fit`` method.

        The ``GaussianMultivariate`` is expected to be called with default distribution
        set as ``GaussianUnivariate``.

        Input:
        - Table data (pandas.DataFrame)
        """
        # Setup
        table_data = pd.DataFrame({'a': [1, 2, 3], 'b': [1, 2, 3]})
        instance = Constraint(handling_strategy='transform',
                              fit_columns_model=True)
        instance.constraint_columns = ('a', 'b')

        # Run
        instance.fit(table_data)

        # Assert
        gm_mock.assert_called_once_with(distribution=GaussianUnivariate)
예제 #16
0
파일: test_base.py 프로젝트: sdv-dev/SDV
    def test__validate_data_meets_constraints_invalid_input(self):
        """Test the ``_validate_data_meets_constraint`` method.

        Expect that the method raises an error when the constraint columns
        are in the given data and the ``is_valid`` returns False for any row.

        Input:
        - Table data contains an invalid row
        Output:
        - None
        Side Effects:
        - A ``ConstraintsNotMetError`` is thrown
        """
        # Setup
        data = pd.DataFrame(
            {
                'a': [0, 1, 2, 3, 4, 5, 6, 7],
                'b': [3, 4, 5, 6, 7, 8, 9, 10]
            },
            index=[0, 1, 2, 3, 4, 5, 6, 7])
        constraint = Constraint()
        constraint.constraint_columns = ['a', 'b']
        is_valid_result = pd.Series(
            [True, False, True, False, False, False, False, False])
        constraint.is_valid = Mock(return_value=is_valid_result)

        # Run / Assert
        error_message = re.escape(
            "Data is not valid for the 'Constraint' constraint:\n   "
            'a  b\n1  1  4\n3  3  6\n4  4  7\n5  5  8\n6  6  9'
            '\n+1 more')
        with pytest.raises(ConstraintsNotMetError, match=error_message):
            constraint._validate_data_meets_constraint(data)
예제 #17
0
    def _fit_transform_constraints(self, data):
        for idx, constraint in enumerate(self._constraints):
            if isinstance(constraint, type):
                constraint = constraint().to_dict()
            elif isinstance(constraint, Constraint):
                constraint = constraint.to_dict()

            constraint = Constraint.from_dict(constraint)
            self._constraints[idx] = constraint

            data = constraint.fit_transform(data)

        return data
예제 #18
0
    def test_is_valid(self):
        """Test the ``Constraint.is_valid` method. This should be overwritten by all the
        subclasses that have a way to decide which rows are valid and which are not.

        The ``Constraint.is_valid`` method is expected to:
        - Say whether the given table rows are valid.

        Input:
        - Table data (pandas.DataFrame)
        Output:
        - Series of ``True`` values (pandas.Series)
        """
        # Setup
        table_data = pd.DataFrame({'a': [1, 2, 3]})

        # Run
        instance = Constraint(handling_strategy='transform')
        out = instance.is_valid(table_data)

        # Assert
        expected_out = pd.Series([True, True, True])
        pd.testing.assert_series_equal(expected_out, out)
예제 #19
0
파일: test_base.py 프로젝트: sdv-dev/SDV
    def test_reverse_transform(self):
        """Test the ``Constraint.reverse_transform`` method. It is an identity method
        for completion, to be optionally overwritten by subclasses.

        The ``Constraint.reverse_transform`` method is expected to:
            - Return a copy of the input data.

        Input:
            - Anything
        Output:
            - Input
        """
        # Setup
        instance = Constraint()
        data = pd.DataFrame()

        # Run
        output = instance.reverse_transform(data)

        # Assert
        pd.testing.assert_frame_equal(output, pd.DataFrame())
        assert id(output) != id(data)
예제 #20
0
    def test___init___not_kown(self):
        """Test ``Constraint.__init__`` method when a not known ``handling_strategy`` is passed.

        If a not known ``handling_strategy`` is given, a ValueError is raised.

        Input:
            - not_known
        Side effects:
            - ValueError
        """
        # Run
        with pytest.raises(ValueError):
            Constraint(handling_strategy='not_known')
예제 #21
0
파일: test_base.py 프로젝트: csala/SDV
    def test_transform_model_enabled_some_columns_missing(self):
        """Test that the ``Constraint.transform`` method uses column model.

        If ``table_data`` is missing some of the ``constraint_columns``,
        the ``_column_model`` should be used to sample the rest and the
        data should be transformed.

        Input:
        - Table with some missing columns.
        Output:
        - Transformed data with all columns.
        """
        # Setup
        instance = Constraint(handling_strategy='transform')
        instance._transform = lambda x: x
        instance.constraint_columns = ('a', 'b')
        instance._hyper_transformer = Mock()
        instance._columns_model = Mock()
        conditions = [
            pd.DataFrame([[5, 1, 2]], columns=['a', 'b', 'c']),
            pd.DataFrame([[6, 3, 4]], columns=['a', 'b', 'c'])
        ]
        transformed_conditions = [
            pd.DataFrame([[1]], columns=['b']),
            pd.DataFrame([[3]], columns=['b'])
        ]
        instance._columns_model.sample.return_value = pd.DataFrame(
            [[1, 2, 3]], columns=['b', 'c', 'a'])
        instance._hyper_transformer.transform.side_effect = transformed_conditions
        instance._hyper_transformer.reverse_transform.side_effect = conditions

        # Run
        data = pd.DataFrame([[1, 2], [3, 4]], columns=['b', 'c'])
        transformed_data = instance.transform(data)

        # Assert
        expected_tranformed_data = pd.DataFrame([[1, 2, 3]],
                                                columns=['b', 'c', 'a'])
        expected_result = pd.DataFrame([[5, 1, 2], [6, 3, 4]],
                                       columns=['a', 'b', 'c'])
        model_calls = instance._columns_model.sample.mock_calls
        assert len(model_calls) == 2
        instance._columns_model.sample.assert_any_call(num_rows=1,
                                                       conditions={'b': 1})
        instance._columns_model.sample.assert_any_call(num_rows=1,
                                                       conditions={'b': 3})
        reverse_transform_calls = instance._hyper_transformer.reverse_transform.mock_calls
        pd.testing.assert_frame_equal(reverse_transform_calls[0][1][0],
                                      expected_tranformed_data)
        pd.testing.assert_frame_equal(reverse_transform_calls[1][1][0],
                                      expected_tranformed_data)
        pd.testing.assert_frame_equal(transformed_data, expected_result)
예제 #22
0
파일: test_base.py 프로젝트: sdv-dev/SDV
    def test_transform(self):
        """Test the ``Constraint.transform`` method.

        By default, it behaves like an identity method, to be optionally overwritten by subclasses.

        The ``Constraint.transform`` method is expected to:
            - Return a copy of the input data.

        Input:
            - a DataFrame

        Output:
            - Input
        """
        # Setup
        instance = Constraint()
        data = pd.DataFrame({'col': ['input']})

        # Run
        output = instance.transform(data)

        # Assert
        pd.testing.assert_frame_equal(output, pd.DataFrame({'col': ['input']}))
        assert id(output) != id(data)
예제 #23
0
파일: test_base.py 프로젝트: csala/SDV
    def test_transform_model_enabled_reject_sampling_duplicates_valid_rows(
            self):
        """Test the ``Constraint.transform`` method's reject sampling fall back.

        If the column model is used but doesn't return valid rows,
        reject sampling should be used to get the valid rows. If after 100
        tries, some valid rows are created but not enough, then the valid rows
        are duplicated to meet the ``num_rows`` requirement.

        Setup:
        - The ``_columns_model`` returns some valid rows the first time, and then
        an empy ``DataFrame`` for every other call.
        Input:
        - Table with some missing columns.
        Output:
        - Transformed data with all columns.
        """
        # Setup
        instance = Constraint(handling_strategy='transform')
        instance._transform = lambda x: x
        instance.constraint_columns = ('a', 'b')
        instance._hyper_transformer = Mock()
        instance._columns_model = Mock()
        transformed_conditions = [
            pd.DataFrame([[1], [1], [1], [1], [1]], columns=['b'])
        ]
        instance._columns_model.sample.side_effect = [
            pd.DataFrame([[1, 2], [1, 3]], columns=['a', 'b'])
        ] + [pd.DataFrame()] * 100
        instance._hyper_transformer.transform.side_effect = transformed_conditions
        instance._hyper_transformer.reverse_transform = lambda x: x

        # Run
        data = pd.DataFrame([[1], [1], [1], [1], [1]], columns=['b'])
        transformed_data = instance.transform(data)

        # Assert
        expected_result = pd.DataFrame(
            [[1, 2], [1, 3], [1, 2], [1, 3], [1, 2]], columns=['a', 'b'])
        model_calls = instance._columns_model.sample.mock_calls
        assert len(model_calls) == 101
        instance._columns_model.sample.assert_any_call(num_rows=5,
                                                       conditions={'b': 1})
        pd.testing.assert_frame_equal(transformed_data, expected_result)
예제 #24
0
    def test___init___all(self):
        """Test ``Constraint.__init__`` method when 'all' is passed.

        If 'all' is given, the ``__init__`` method should leave ``transform``,
        ``reverse_transform`` and ``is_valid`` untouched.

        Input:
            - all
        Side effects:
            - is_valid != identity
            - transform != identity
            - reverse_transform != identity
        """
        # Run
        instance = Constraint(handling_strategy='all')

        # Asserts
        assert instance.filter_valid != instance._identity
        assert instance.transform != instance._identity
        assert instance.reverse_transform != instance._identity
예제 #25
0
    def test___init___reject_sampling(self):
        """Test ``Constraint.__init__`` method when 'reject_sampling' is passed.

        If 'reject_sampling' is given, the ``__init__`` method should replace the ``transform``
        and ``reverse_transform`` methods with an identity and leave ``is_valid`` untouched.

        Input:
            - reject_sampling
        Side effects:
            - is_valid != identity
            - transform == identity
            - reverse_transform == identity
        """
        # Run
        instance = Constraint(handling_strategy='reject_sampling')

        # Asserts
        assert instance.filter_valid != instance._identity
        assert instance.transform == instance._identity
        assert instance.reverse_transform == instance._identity
예제 #26
0
    def test_transform_invalid_table_data(self):
        """Test the ``Constraint.transform`` method. If ``table_data``
        is invalid, it should raise an ``MissingConstraintColumnError``.

        The ``Constraint.transform`` method is expected to:
        - Raise ``MissingConstraintColumnError``.
        """
        # Run
        instance = Constraint(handling_strategy='transform')
        instance._transform = lambda x: x
        instance._constraint_columns = ('a')

        # Assert
        with pytest.raises(MissingConstraintColumnError):
            instance.transform(pd.DataFrame())
예제 #27
0
파일: test_base.py 프로젝트: csala/SDV
    def test_transform_model_enabled_reject_sampling(self):
        """Test the ``Constraint.transform`` method's reject sampling.

        If the column model is used but doesn't return valid rows,
        reject sampling should be used to get the valid rows.

        Setup:
        - The ``_columns_model`` returns some valid_rows the first time,
        and then the rest with the next call.
        Input:
        - Table with some missing columns.
        Output:
        - Transformed data with all columns.
        """
        # Setup
        instance = Constraint(handling_strategy='transform')
        instance._transform = lambda x: x
        instance.constraint_columns = ('a', 'b')
        instance._hyper_transformer = Mock()
        instance._columns_model = Mock()
        transformed_conditions = [
            pd.DataFrame([[1], [1], [1], [1], [1]], columns=['b'])
        ]
        instance._columns_model.sample.side_effect = [
            pd.DataFrame([[1, 2], [1, 3]], columns=['a', 'b']),
            pd.DataFrame([[1, 4], [1, 5], [1, 6], [1, 7]], columns=['a', 'b']),
        ]
        instance._hyper_transformer.transform.side_effect = transformed_conditions
        instance._hyper_transformer.reverse_transform = lambda x: x

        # Run
        data = pd.DataFrame([[1], [1], [1], [1], [1]], columns=['b'])
        transformed_data = instance.transform(data)

        # Assert
        expected_result = pd.DataFrame(
            [[1, 2], [1, 3], [1, 4], [1, 5], [1, 6]], columns=['a', 'b'])
        model_calls = instance._columns_model.sample.mock_calls
        assert len(model_calls) == 2
        instance._columns_model.sample.assert_any_call(num_rows=5,
                                                       conditions={'b': 1})
        assert model_calls[1][2]['num_rows'] > 3
        pd.testing.assert_frame_equal(transformed_data, expected_result)
예제 #28
0
    def test_transform_calls__transform(self):
        """Test the ``Constraint.transform`` method. It calls ``_transform``
        if ``_validate_columns`` returns True.

        The ``Constraint.transform`` method is expected to:
        - Return value returned by ``_transform``.

        Input:
        - Anything
        Output:
        - Result of ``_transform(input)``
        """
        # Setup
        constraint_mock = Mock()
        constraint_mock._transform.return_value = 'the_transformed_data'
        constraint_mock._validate_columns.return_value = True

        # Run
        output = Constraint.transform(constraint_mock, 'input')

        # Assert
        assert output == 'the_transformed_data'
예제 #29
0
파일: test_base.py 프로젝트: sdv-dev/SDV
    def test_transform_calls__transform(self):
        """Test that the ``Constraint.transform`` method calls ``_transform``.

        The ``Constraint.transform`` method is expected to:
            - Return value returned by ``_transform``.

        Input:
            - Anything

        Output:
            - Result of ``_transform(input)``
        """
        # Setup
        constraint_mock = Mock()
        constraint_mock.constraint_columns = []
        constraint_mock._transform.return_value = 'the_transformed_data'

        # Run
        output = Constraint.transform(constraint_mock, pd.DataFrame())

        # Assert
        assert output == 'the_transformed_data'
예제 #30
0
파일: test_base.py 프로젝트: sdv-dev/SDV
    def test_transform_all_columns_missing(self):
        """Test the ``Constraint.transform`` method with all columns missing.

        If ``table_data`` is missing all of the ``constraint_columns`` a
        ``MissingConstraintColumnError`` is raised.

        The ``Constraint.transform`` method is expected to:
        - Raise ``MissingConstraintColumnError``.
        """
        # Run
        instance = Constraint()
        instance._transform = lambda x: x
        instance.constraint_columns = ('a', )

        # Assert
        with pytest.raises(MissingConstraintColumnError):
            instance.transform(pd.DataFrame())