labels = len(G1) * [r"Graph $t_1$"] + len(G2) * [r"Graph $t_2$"] plot_df = pd.DataFrame(data=Xhat_full, columns=["0", "1"]) plot_df["labels"] = labels # ax.scatter(Xhat1[:25, 0], Xhat1[:25, 1], marker="s", c=colors[0], label="Graph 1, Block 1") # ax.scatter(Xhat1[25:, 0], Xhat1[25:, 1], marker="o", c=colors[0], label="Graph 1, Block 2") # ax.scatter(Xhat2[:25, 0], Xhat2[:25, 1], marker="s", c=colors[1], label="Graph 2, Block 1") # ax.scatter(Xhat2[25:, 0], Xhat2[25:, 1], marker="o", c=colors[1], label="Graph 2, Block 2") # ax.legend() sns.scatterplot(data=plot_df, x="0", y="1", hue="labels", s=100) ax.set( xlabel="Embedding dimension 1", ylabel="Embedding dimension 2", xticks=[], yticks=[] ) sns.move_legend(ax, "upper right", title=None) # Plot lines between matched pairs of points for i in range(sum(n)): ax.plot( [Xhat1[i, 0], Xhat2[i, 0]], [Xhat1[i, 1], Xhat2[i, 1]], "black", alpha=0.15, zorder=-1, ) i = 20 mean_x = np.mean([Xhat1[i, 0], Xhat2[i, 0]]) mean_y = np.mean([Xhat1[i, 1], Xhat2[i, 1]])
parser = argparse.ArgumentParser(description='PTS 07 CBW Demand Variation Plot') parser.add_argument('-d','--device', help='Device name', dest='device_name', required=True) args = parser.parse_args() plt.rc('font', size=8) filename = 'test07_main_averaged.csv' sns.set_style("whitegrid") dv_data = pd.read_csv(filename, sep = ';', header=0) dv_data.sort_values('QD', inplace=True, ascending=True) dv_data.QD = dv_data.QD.astype(str) dv_plot = sns.relplot(data=dv_data, x='QD', y='IOPS', hue='TC', sort=False, kind='line', palette=sns.color_palette('plasma', 6)) sns.move_legend( dv_plot, "lower center", bbox_to_anchor=(0.5, -.15), ncol=3, title='TC', frameon=False, ) dv_plot.fig.set_figwidth(8) dv_plot.fig.set_figheight(4) dv_plot.set(ylabel='IOPS') dv_plot.set(xlabel='Queue depth') dv_plot.savefig(str(args.device_name) + '_cbw_dv.svg', format='svg', transparent=True) dv_plot.savefig(str(args.device_name) + '_cbw_dv.pdf', format='pdf')
acc = accuracy_score(y_test, y_pred) macro_f1 = f1_score(y_test, y_pred, average="macro") row = { "split": split, "n_components": n_components, "accuracy": acc, "model": model.__class__.__name__, "macro_f1": macro_f1, } rows.append(row) results = pd.DataFrame(rows) #%% from giskard.plot import set_theme set_theme() fig, ax = plt.subplots(1, 1, figsize=(10, 6)) sns.lineplot(data=results, x="n_components", y="accuracy", hue="model") sns.move_legend(ax, "lower left", bbox_to_anchor=(0, 1), title=None, ncol=2) ax.set_xlabel("# of dimensions") ax.set_ylabel("Accuracy") ax.set(xscale="log") fig, ax = plt.subplots(1, 1, figsize=(10, 6)) sns.lineplot(data=results, x="n_components", y="macro_f1", hue="model") sns.move_legend(ax, "lower left", bbox_to_anchor=(0, 1), title=None, ncol=2) ax.set_xlabel("# of dimensions") ax.set_ylabel("Macro F1") ax.set(xscale="log")
'State AB 2': 'tab:orange', 'State AB 3': 'tab:green', 'State AB 5': 'tab:red', 'State AB 10': 'tab:purple'} hir_data = pd.read_csv(filename, sep = ';', header=0) hir_data_melted = pd.melt(hir_data, id_vars=['Round', 'IOPS', 'STATE'], value_vars=['AVLAT', 'P99_LAT', 'P99D9_LAT', 'P99D99_LAT', 'MAX_LAT'], var_name='Latency type') avlat_data = hir_data_melted.loc[hir_data_melted['Latency type'] == 'AVLAT'] hir_plot = sns.relplot(x='Round', y='value', hue='STATE', kind='scatter', data=avlat_data, palette=hue_colors, edgecolor=None, rasterized=True) sns.move_legend( hir_plot, "lower center", bbox_to_anchor=(0.5, -.05), ncol=3, title=None, frameon=False, ) hir_plot.fig.set_figwidth(15) hir_plot.fig.set_figheight(7) hir_plot.set(ylabel='Latency, µs') hir_plot.set(xlabel='Time, min') hir_plot.set(yscale='log') hir_plot.savefig(str(args.device_name) + '_hir_latency.svg', format='svg', transparent=True) hir_plot.savefig(str(args.device_name) + '_hir_latency.png', format='png') hir_plot.savefig(str(args.device_name) + '_hir_latency.pdf', format='pdf') p99d99_data = hir_data_melted.loc[hir_data_melted['Latency type'] == 'P99D99_LAT']
data_dir_string = '/home/nilskk/rewe_project/data/penny' # data_dir_string = '/data/voc_fruit_weights' data_directory = Path(data_dir_string) input_directory = Path(os.path.join(data_dir_string, 'dataset_information')) output_directory = Path(os.path.join(data_dir_string, 'dataset_plots')) output_directory.mkdir(exist_ok=True, parents=True) file_dataframe = pd.read_pickle(os.path.join(input_directory, 'file_dataframe.pkl')) object_dataframe = pd.read_pickle(os.path.join(input_directory, 'object_dataframe.pkl')) sns.set_theme() # Anzahl Objekte pro Klasse Train/Test plt.figure(figsize=(8,8)) ax = sns.boxenplot(data=file_dataframe, x='class', y='objects', hue='set') sns.move_legend(ax, loc='upper left', bbox_to_anchor=(1, 1)) ax.yaxis.set_major_locator(ticker.MultipleLocator(1.0)) ax.yaxis.set_major_formatter(ticker.ScalarFormatter()) plt.xticks(rotation=40, ha="right") # plt.legend(bbox_to_anchor=(1.01, 1), borderaxespad=0) plt.xlabel('Klasse') plt.ylabel('Anzahl der Objekte pro Bild') plt.savefig(os.path.join(output_directory, 'objects_per_class.png'), bbox_inches='tight') # Anzahl Bilder pro Klasse Train/Test plt.figure(figsize=(8,8)) ax = sns.countplot(data=file_dataframe, x='class', hue='set') sns.move_legend(ax, loc='upper left', bbox_to_anchor=(1, 1)) plt.xticks(rotation=40, ha="right") # plt.legend(bbox_to_anchor=(1.01, 1), borderaxespad=0) plt.xlabel('Klasse')
sns.stripplot(x="value", y="measurement", hue="species", data=iris, dodge=True, alpha=.25, zorder=1, legend=False) # Show the conditional means, aligning each pointplot in the # center of the strips by adjusting the width allotted to each # category (.8 by default) by the number of hue levels sns.pointplot(x="value", y="measurement", hue="species", data=iris, dodge=.8 - .8 / 3, join=False, palette="dark", markers="d", scale=.75, ci=None) # Improve the legend sns.move_legend(ax, loc="lower right", ncol=3, frameon=True, columnspacing=1, handletextpad=0)
wsat_data, id_vars=['Round', 'TGib', 'TDF'], value_vars=['Average', '99%', '99.9%', '99.99%', 'Maximum'], var_name='Latency type') wsat_plot = sns.relplot(x='TDF', y='value', hue='Latency type', kind='line', data=wsat_data_lat_melted, palette=sns.color_palette('plasma', 5)) sns.move_legend( wsat_plot, "lower center", bbox_to_anchor=(0.5, -.1), ncol=3, title=None, frameon=False, ) wsat_plot.fig.set_figwidth(8) wsat_plot.fig.set_figheight(4) wsat_plot.set(ylabel='Latency, µs') wsat_plot.set(xlabel='Drive fills') wsat_plot.set(yscale='log') wsat_plot.set(xlim=(0, None)) wsat_plot.savefig(str(args.device_name) + '_wsat_latency.svg', format='svg', transparent=True) wsat_plot.savefig(str(args.device_name) + '_wsat_latency.pdf', format='pdf')
new_labels = [ "Parameterization", 'softmax', 'low-rank', "Num states", "1024", "2048", "4096", "8192", "16384", ] sns.move_legend( g, "right", #"lower center", bbox_to_anchor=(1.1, 0.65), ncol=1, title=None, frameon=False, ) for t, l in zip(g.legend.texts, new_labels): t.set_text(l) ax = g.axes[0][0] ax.set_xscale("log", base=2) #ax.set_yscale("log", base=2) g.tight_layout() g.savefig("lhmm-speed-accuracy.png") g = sns.relplot( data=hmm_df, x="speed",