def seal_obj(): # params obj params = EncryptionParameters() # set params params.set_poly_modulus("1x^4096 + 1") params.set_coeff_modulus(seal.coeff_modulus_128(4096)) params.set_plain_modulus(1 << 16) # get context context = SEALContext(params) # get evaluator evaluator = Evaluator(context) # gen keys keygen = KeyGenerator(context) public_key = keygen.public_key() private_key = keygen.secret_key() # evaluator keys ev_keys = EvaluationKeys() keygen.generate_evaluation_keys(30, ev_keys) # get encryptor and decryptor encryptor = Encryptor(context, public_key) decryptor = Decryptor(context, private_key) # float number encoder encoder = FractionalEncoder(context.plain_modulus(), context.poly_modulus(), 64, 32, 3) return evaluator, encoder.encode, encoder.decode, encryptor.encrypt, decryptor.decrypt, ev_keys
def initialize_fractional( poly_modulus_degree=4096, security_level_bits=128, plain_modulus_power_of_two=10, plain_modulus=None, encoder_integral_coefficients=1024, encoder_fractional_coefficients=3072, encoder_base=2 ): parameters = EncryptionParameters() poly_modulus = "1x^" + str(poly_modulus_degree) + " + 1" parameters.set_poly_modulus(poly_modulus) if security_level_bits == 128: parameters.set_coeff_modulus(seal.coeff_modulus_128(poly_modulus_degree)) elif security_level_bits == 192: parameters.set_coeff_modulus(seal.coeff_modulus_192(poly_modulus_degree)) else: parameters.set_coeff_modulus(seal.coeff_modulus_128(poly_modulus_degree)) print("Info: security_level_bits unknown - using default security_level_bits = 128") if plain_modulus is None: plain_modulus = 1 << plain_modulus_power_of_two parameters.set_plain_modulus(plain_modulus) context = SEALContext(parameters) print_parameters(context) global encoder encoder = FractionalEncoder( context.plain_modulus(), context.poly_modulus(), encoder_integral_coefficients, encoder_fractional_coefficients, encoder_base ) keygen = KeyGenerator(context) public_key = keygen.public_key() secret_key = keygen.secret_key() global encryptor encryptor = Encryptor(context, public_key) global evaluator evaluator = Evaluator(context) global decryptor decryptor = Decryptor(context, secret_key) global evaluation_keys evaluation_keys = EvaluationKeys() keygen.generate_evaluation_keys(16, evaluation_keys)
def _create_keys(self, context): keygen = KeyGenerator(context) public_key = keygen.public_key() secret_key = keygen.secret_key() ev_keys16 = EvaluationKeys() keygen.generate_evaluation_keys(16, ev_keys16) return public_key, secret_key, ev_keys16
def keygen(context, batching): #print("Generating secret/public keys: ") time_start = time.time() keygen = KeyGenerator(context) time_end = time.time() #print("Done in {} miliseconds".format((str)(1000 * (time_end - time_start)))) public_key = keygen.public_key() secret_key = keygen.secret_key() #use moderate size decomposition bit count if batching: gal_keys = GaloisKeys() keygen.generate_galois_keys(30, gal_keys) #since we are going to do some multiplications we are going to relinearize ev_keys = EvaluationKeys() keygen.generate_evaluation_keys(30, ev_keys) return public_key, secret_key, ev_keys, gal_keys else: return public_key, secret_key
ChooserPoly parms = EncryptionParameters() parms.set_poly_modulus("1x^8192 + 1") parms.set_coeff_modulus(seal.coeff_modulus_128(8192)) parms.set_plain_modulus(1 << 21) context = SEALContext(parms) encoder = IntegerEncoder(context.plain_modulus()) keygen = KeyGenerator(context) public_key = keygen.public_key() secret_key = keygen.secret_key() ev_keys40 = EvaluationKeys() ev_keys20 = EvaluationKeys() #keygen.generate_evaluation_keys(40,5,ev_keys40) keygen.generate_evaluation_keys(20, 3, ev_keys20) encryptor = Encryptor(context, public_key) evaluator = Evaluator(context) decryptor = Decryptor(context, secret_key) A = [] n = int(input("Enter dimension: ")) for i in range(n): a = [] for j in range(n): encrypted_data1 = Ciphertext() ran = random.randint(0, 10) print(ran) encryptor.encrypt(encoder.encode(ran), encrypted_data1) a.append(encrypted_data1)
parms.set_poly_modulus("1x^4096 + 1") parms.set_coeff_modulus(seal.coeff_modulus_128(4096)) # Note that 40961 is a prime number and 2*4096 divides 40960. parms.set_plain_modulus(40961) context = SEALContext(parms) keygen = KeyGenerator(context) public_key = keygen.public_key() secret_key = keygen.secret_key() gal_keys = GaloisKeys() keygen.generate_galois_keys(30, gal_keys) # Since we are going to do some multiplications we will also relinearize. ev_keys = EvaluationKeys() keygen.generate_evaluation_keys(30, ev_keys) # We also set up an Encryptor, Evaluator, and Decryptor here. encryptor = Encryptor(context, public_key) evaluator = Evaluator(context) decryptor = Decryptor(context, secret_key) # Batching is done through an instance of the PolyCRTBuilder class so need # to start by constructing one. crtbuilder = PolyCRTBuilder(context) slot_count = (int)(crtbuilder.slot_count()) row_size = (int)(slot_count / 2) pod_matrix = [1,2,3,4,8,-4,3,2] plain_matrix = Plaintext() crtbuilder.compose(pod_matrix, plain_matrix)
def example_basics_ii(): print_example_banner("Example: Basics II") # In this example we explain what relinearization is, how to use it, and how # it affects noise budget consumption. # First we set the parameters, create a SEALContext, and generate the public # and secret keys. We use slightly larger parameters than be fore to be able # to do more homomorphic multiplications. parms = EncryptionParameters() parms.set_poly_modulus("1x^8192 + 1") # The default coefficient modulus consists of the following primes: # 0x7fffffffba0001, # 0x7fffffffaa0001, # 0x7fffffff7e0001, # 0x3fffffffd60001. # The total size is 219 bits. parms.set_coeff_modulus(seal.coeff_modulus_128(8192)) parms.set_plain_modulus(1 << 10) context = SEALContext(parms) print_parameters(context) keygen = KeyGenerator(context) public_key = keygen.public_key() secret_key = keygen.secret_key() # We also set up an Encryptor, Evaluator, and Decryptor here. We will # encrypt polynomials directly in this example, so there is no need for # an encoder. encryptor = Encryptor(context, public_key) evaluator = Evaluator(context) decryptor = Decryptor(context, secret_key) # There are actually two more types of keys in SEAL: `evaluation keys' and # `Galois keys'. Here we will discuss evaluation keys, and Galois keys will # be discussed later in example_batching(). # In SEAL, a valid ciphertext consists of two or more polynomials with # coefficients integers modulo the product of the primes in coeff_modulus. # The current size of a ciphertext can be found using Ciphertext::size(). # A freshly encrypted ciphertext always has size 2. #plain1 = Plaintext("1x^2 + 2x^1 + 3") plain1 = Plaintext("1x^2 + 2x^1 + 3") encrypted = Ciphertext() print("") print("Encrypting " + plain1.to_string() + ": ") encryptor.encrypt(plain1, encrypted) print("Done") print("Size of a fresh encryption: " + (str)(encrypted.size())) print("Noise budget in fresh encryption: " + (str)(decryptor.invariant_noise_budget(encrypted)) + " bits") # Homomorphic multiplication results in the output ciphertext growing in size. # More precisely, if the input ciphertexts have size M and N, then the output # ciphertext after homomorphic multiplication will have size M+N-1. In this # case we square encrypted twice to observe this growth (also observe noise # budget consumption). evaluator.square(encrypted) print("Size after squaring: " + (str)(encrypted.size())) print("Noise budget after squaring: " + (str)(decryptor.invariant_noise_budget(encrypted)) + " bits") plain2 = Plaintext() decryptor.decrypt(encrypted, plain2) print("Second power: " + plain2.to_string()) evaluator.square(encrypted) print("Size after squaring: " + (str)(encrypted.size())) print("Noise budget after squaring: " + (str)(decryptor.invariant_noise_budget(encrypted)) + " bits") # It does not matter that the size has grown -- decryption works as usual. # Observe from the print-out that the coefficients in the plaintext have # grown quite large. One more squaring would cause some of them to wrap # around plain_modulus (0x400), and as a result we would no longer obtain # the expected result as an integer-coefficient polynomial. We can fix this # problem to some extent by increasing plain_modulus. This would make sense, # since we still have plenty of noise budget left. plain2 = Plaintext() decryptor.decrypt(encrypted, plain2) print("Fourth power: " + plain2.to_string()) # The problem here is that homomorphic operations on large ciphertexts are # computationally much more costly than on small ciphertexts. Specifically, # homomorphic multiplication on input ciphertexts of size M and N will require # O(M*N) polynomial multiplications to be performed, and an addition will # require O(M+N) additions. Relinearization reduces the size of the ciphertexts # after multiplication back to the initial size (2). Thus, relinearizing one # or both inputs before the next multiplication, or e.g. before serializing the # ciphertexts, can have a huge positive impact on performance. # Another problem is that the noise budget consumption in multiplication is # bigger when the input ciphertexts sizes are bigger. In a complicated # computation the contribution of the sizes to the noise budget consumption # can actually become the dominant term. We will point this out again below # once we get to our example. # Relinearization itself has both a computational cost and a noise budget cost. # These both depend on a parameter called `decomposition bit count', which can # be any integer at least 1 [dbc_min()] and at most 60 [dbc_max()]. A large # decomposition bit count makes relinearization fast, but consumes more noise # budget. A small decomposition bit count can make relinearization slower, but # might not change the noise budget by any observable amount. # Relinearization requires a special type of key called `evaluation keys'. # These can be created by the KeyGenerator for any decomposition bit count. # To relinearize a ciphertext of size M >= 2 back to size 2, we actually need # M-2 evaluation keys. Attempting to relinearize a too large ciphertext with # too few evaluation keys will result in an exception being thrown. # We repeat our computation, but this time relinearize after both squarings. # Since our ciphertext never grows past size 3 (we relinearize after every # multiplication), it suffices to generate only one evaluation key. # First, we need to create evaluation keys. We use a decomposition bit count # of 16 here, which can be thought of as quite small. ev_keys16 = EvaluationKeys() # This function generates one single evaluation key. Another overload takes # the number of keys to be generated as an argument, but one is all we need # in this example (see above). keygen.generate_evaluation_keys(16, ev_keys16) print("") print("Encrypting " + plain1.to_string() + ": ") encryptor.encrypt(plain1, encrypted) print("Done") print("Size of a fresh encryption: " + (str)(encrypted.size())) print("Noise budget in fresh encryption: " + (str)(decryptor.invariant_noise_budget(encrypted)) + " bits") evaluator.square(encrypted) print("Size after squaring: " + (str)(encrypted.size())) print("Noise budget after squaring: " + (str)(decryptor.invariant_noise_budget(encrypted)) + " bits") evaluator.relinearize(encrypted, ev_keys16) print("Size after relinearization: " + (str)(encrypted.size())) print("Noise budget after relinearizing (dbs = " + (str)(ev_keys16.decomposition_bit_count()) + "): " + (str)(decryptor.invariant_noise_budget(encrypted)) + " bits") evaluator.square(encrypted) print("Size after second squaring: " + (str)(encrypted.size()) + " bits") print("Noise budget after second squaring: " + (str)(decryptor.invariant_noise_budget(encrypted)) + " bits") evaluator.relinearize(encrypted, ev_keys16) print("Size after relinearization: " + (str)(encrypted.size())) print("Noise budget after relinearizing (dbs = " + (str)(ev_keys16.decomposition_bit_count()) + "): " + (str)(decryptor.invariant_noise_budget(encrypted)) + " bits") decryptor.decrypt(encrypted, plain2) print("Fourth power: " + plain2.to_string()) # Of course the result is still the same, but this time we actually # used less of our noise budget. This is not surprising for two reasons: # - We used a very small decomposition bit count, which is why # relinearization itself did not consume the noise budget by any # observable amount; # - Since our ciphertext sizes remain small throughout the two # squarings, the noise budget consumption rate in multiplication # remains as small as possible. Recall from above that operations # on larger ciphertexts actually cause more noise growth. # To make matters even more clear, we repeat the computation a third time, # now using the largest possible decomposition bit count (60). We are not # measuring the time here, but relinearization with these evaluation keys # is significantly faster than with ev_keys16. ev_keys60 = EvaluationKeys() keygen.generate_evaluation_keys(seal.dbc_max(), ev_keys60) print("") print("Encrypting " + plain1.to_string() + ": ") encryptor.encrypt(plain1, encrypted) print("Done") print("Size of a fresh encryption: " + (str)(encrypted.size())) print("Noise budget in fresh encryption: " + (str)(decryptor.invariant_noise_budget(encrypted)) + " bits") evaluator.square(encrypted) print("Size after squaring: " + (str)(encrypted.size())) print("Noise budget after squaring: " + (str)(decryptor.invariant_noise_budget(encrypted)) + " bits") evaluator.relinearize(encrypted, ev_keys60) print("Size after relinearization: " + (str)(encrypted.size())) print("Noise budget after relinearizing (dbc = " + (str)(ev_keys60.decomposition_bit_count()) + "): " + (str)(decryptor.invariant_noise_budget(encrypted)) + " bits") evaluator.square(encrypted) print("Size after second squaring: " + (str)(encrypted.size())) print("Noise budget after second squaring: " + (str)(decryptor.invariant_noise_budget) + " bits") evaluator.relinearize(encrypted, ev_keys60) print("Size after relinearization: " + (str)(encrypted.size())) print("Noise budget after relinearizing (dbc = " + (str)(ev_keys60.decomposition_bit_count()) + "): " + (str)(decryptor.invariant_noise_budget(encrypted)) + " bits") decryptor.decrypt(encrypted, plain2) print("Fourth power: " + plain2.to_string()) # Observe from the print-out that we have now used significantly more of our # noise budget than in the two previous runs. This is again not surprising, # since the first relinearization chops off a huge part of the noise budget. # However, note that the second relinearization does not change the noise # budget by any observable amount. This is very important to understand when # optimal performance is desired: relinearization always drops the noise # budget from the maximum (freshly encrypted ciphertext) down to a fixed # amount depending on the encryption parameters and the decomposition bit # count. On the other hand, homomorphic multiplication always consumes the # noise budget from its current level. This is why the second relinearization # does not change the noise budget anymore: it is already consumed past the # fixed amount determinted by the decomposition bit count and the encryption # parameters. # We now perform a third squaring and observe an even further compounded # decrease in the noise budget. Again, relinearization does not consume the # noise budget at this point by any observable amount, even with the largest # possible decomposition bit count. evaluator.square(encrypted) print("Size after third squaring " + (str)(encrypted.size())) print("Noise budget after third squaring: " + (str)(decryptor.invariant_noise_budget(encrypted)) + " bits") evaluator.relinearize(encrypted, ev_keys60) print("Size after relinearization: " + (str)(encrypted.size())) print("Noise budget after relinearizing (dbc = " + (str)(ev_keys60.decomposition_bit_count()) + "): " + (str)(decryptor.invariant_noise_budget(encrypted)) + " bits") decryptor.decrypt(encrypted, plain2) print("Eighth power: " + plain2.to_string())