def __getitem__(self, node): state_hash = self._get_hash(node) if state_hash in self.nodes: if node.state.player is None: return (0, self.nodes[state_hash][0]) found = (None, None) for similar in self.nodes[state_hash]: if similar.state.player is None: return (0, similar) try: grid = node.state.instance.get_grid_from_state( similar.state) path_search = GridSearchInstance(grid, similar.state.player) path_search_start = GridSearchState( path_search, *node.state.player) path = search.grid_search( path_search, path_search_start, search.AStarFringe( ManhattanDistanceHeuristic(similar.state.player))) if not found[1] or similar.cost + path.info[ "cost"] < found[1].cost: found = (path.info["cost"], similar) except search.SolutionNotFoundError: continue if found[1]: return found raise IndexError()
def __eq__(self, other): for box in self.boxes: if not box in other.boxes: return False if self.player and other.player: current_grid = self.instance.get_grid_from_state(self) path_search = GridSearchInstance(current_grid, self.player) path_search_start = GridSearchState(path_search, other.player[0], other.player[1]) try: search.grid_search( path_search, path_search_start, search.AStarFringe(ManhattanDistanceHeuristic( self.player))) except search.SolutionNotFoundError: return False return True
def _dist(self, first, second): try: grid = self.instance.empty_grid path_search = GridSearchInstance(grid, second) path_search_start = GridSearchState(path_search, *first) path = search.grid_search( path_search, path_search_start, search.AStarFringe(ManhattanDistanceHeuristic(second))) return path.info["cost"] except search.SolutionNotFoundError: return float("inf")
def generate_neighbors(self, state): neighbors = [] current_grid = self.get_grid_from_state(state) available_boxes = self.boxes_to_consider.get(self.last_state, state, current_grid) for x, y in available_boxes: for dx, dy in [(1, 0), (-1, 0), (0, 1), (0, -1)]: old_player_pos = (x - dx, y - dy) new_player_pos = (x, y) box_pos = (x + dx, y + dy) player_blocked = self._is_blocked(current_grid, *old_player_pos) box_blocked = self._is_blocked(current_grid, *box_pos) if player_blocked or box_blocked: continue new_boxes = [(x_j, y_j) if (x_j, y_j) != (x, y) else (x_j + dx, y_j + dy) for x_j, y_j in state.boxes] neighbor = GameState(self, new_boxes, new_player_pos) cost = 1 if state.player and state.player != old_player_pos: neighbor_grid = self.get_grid_from_state(state) path_search = GridSearchInstance(neighbor_grid, state.player) path_search_start = GridSearchState( path_search, *old_player_pos) try: path = search.grid_search( path_search, path_search_start, search.AStarFringe( ManhattanDistanceHeuristic(state.player))) cost = path.info["cost"] + 1 except search.SolutionNotFoundError: continue try: neighbor = self.states[neighbor] except: self.states[neighbor] = neighbor neighbors.append((neighbor, cost)) return neighbors
def dist(self, first, second): if first.player is None or second.player is None: return 0 try: grid = first.instance.get_grid_from_state(first) path_search = GridSearchInstance(grid, second.player) path_search_start = GridSearchState(path_search, *first.player) path = search.grid_search( path_search, path_search_start, search.AStarFringe(ManhattanDistanceHeuristic(second.player))) return path.info["cost"] except search.SolutionNotFoundError: return float("inf")
def solve_uni(instance, search_strategy): solution = search.search(instance, instance.start, search_strategy, True) for i in range(0, len(solution)): print(solution[i].state, solution[i].cost) current_grid = instance.get_grid_from_state(instance.goal) path_search = GridSearchInstance(current_grid, solution[-1].state.player) path_search_start = GridSearchState(path_search, *instance.goal.player) path_to_start = search.grid_search( path_search, path_search_start, search.AStarFringe( ManhattanDistanceHeuristic(solution[-1].state.player))) solution.info["cost"] += path_to_start.info["cost"] print(instance.goal, solution.info["cost"]) return solution
def add(self, node): state_hash = self._get_hash(node) if state_hash in self.nodes and node.state.player is not None: for similar in self.nodes[state_hash]: if similar.state.player is None: return None try: grid = node.state.instance.get_grid_from_state( similar.state) path_search = GridSearchInstance(grid, similar.state.player) path_search_start = GridSearchState( path_search, *node.state.player) path = search.grid_search( path_search, path_search_start, search.AStarFringe( ManhattanDistanceHeuristic(similar.state.player))) except search.SolutionNotFoundError: continue return self.nodes[state_hash].append(node)