def fill_round_1(self, t_1: PublicKey, t_2: PublicKey): if self.t_1 is None: self.t_1 = t_1.clone(self.secp) else: self.t_1.add_assign(self.secp, t_1) if self.t_2 is None: self.t_2 = t_2.clone(self.secp) else: self.t_2.add_assign(self.secp, t_2)
def build_transactions(self): assert self.role == Role.SELLER and self.stage == Stage.LOCK, "Incorrect stage" # Check output range proof output = Output(OutputFeatures.DEFAULT_OUTPUT, self.commit, self.range_proof) assert output.verify(self.secp), "Invalid bulletproof" # Build refund tx refund_input = Input(OutputFeatures.DEFAULT_OUTPUT, self.commit) public_refund_nonce_sum = PublicKey.from_combination( self.secp, [self.public_refund_nonce, self.foreign_public_refund_nonce]) refund_signature = aggsig.add_partials(self.secp, [ self.partial_refund_signature, self.foreign_partial_refund_signature ], public_refund_nonce_sum) assert aggsig.verify( self.secp, refund_signature, self.public_refund_excess, self.refund_fee_amount, self.refund_lock_height), "Unable to verify refund signature" refund_kernel = Kernel(0, self.refund_fee_amount, self.refund_lock_height, None, None) self.refund_tx = Transaction([refund_input], [self.refund_output], [refund_kernel], self.refund_offset) refund_kernel.excess = self.refund_tx.sum_commitments(self.secp) refund_kernel.excess_signature = refund_signature assert self.refund_tx.verify_kernels( self.secp), "Unable to verify refund kernel" # Build multisig tx public_nonce_sum = PublicKey.from_combination( self.secp, [self.public_nonce, self.foreign_public_nonce]) signature = aggsig.add_partials( self.secp, [self.partial_signature, self.foreign_partial_signature], public_nonce_sum) assert aggsig.verify(self.secp, signature, self.public_excess, self.fee_amount, self.lock_height), \ "Unable to verify signature" kernel = Kernel(0, self.fee_amount, self.lock_height, None, None) self.tx = Transaction(self.inputs, [self.change_output, output], [kernel], self.offset) kernel.excess = self.tx.sum_commitments(self.secp) kernel.excess_signature = signature assert self.tx.verify_kernels(self.secp), "Unable to verify kernel" self.swap_nonce = SecretKey.random(self.secp) self.public_swap_nonce = self.swap_nonce.to_public_key(self.secp)
def to_public_key(self, secp) -> PublicKey: assert isinstance(secp, Secp256k1) obj = PublicKey(secp) res = lib.secp256k1_pedersen_commitment_to_pubkey( secp.ctx, obj.key, self.commitment) assert res, "Unable to convert to public key" return obj
def bullet_proof_multisig_1( self, value: int, blind: SecretKey, commit: Commitment, common_nonce: SecretKey, nonce: SecretKey, extra_data: bytearray) -> (PublicKey, PublicKey): scratch = lib.secp256k1_scratch_space_create(self.ctx, 256 * MAX_WIDTH) t_1 = PublicKey(self) t_2 = PublicKey(self) blind_key = ffi.new("char []", bytes(blind.key)) res = lib.secp256k1_bulletproof_rangeproof_prove( self.ctx, scratch, self.gens, ffi.NULL, ffi.NULL, ffi.NULL, t_1.key, t_2.key, [value], ffi.NULL, [blind_key], [commit.commitment], 1, self.GENERATOR_H, 64, bytes(common_nonce.key), bytes(nonce.key), bytes(extra_data), len(extra_data), ffi.NULL) lib.secp256k1_scratch_space_destroy(scratch) assert res, "Unable to generate multisig bulletproof" return t_1, t_2
def test_sig(): # Test Grin-like signature scheme secp = Secp256k1(None, FLAG_ALL) nonce_a = SecretKey.random(secp) public_nonce_a = nonce_a.to_public_key(secp) nonce_b = SecretKey.random(secp) public_nonce_b = nonce_b.to_public_key(secp) public_nonce_sum = PublicKey.from_combination( secp, [public_nonce_a, public_nonce_b]) excess_a = SecretKey.random(secp) public_excess_a = excess_a.to_public_key(secp) excess_b = SecretKey.random(secp) public_excess_b = excess_b.to_public_key(secp) public_excess_sum = PublicKey.from_combination( secp, [public_excess_a, public_excess_b]) fee = randint(1, 999999) lock_height = randint(1, 999999) # Partial signature for A sig_a = aggsig.calculate_partial(secp, excess_a, nonce_a, public_excess_sum, public_nonce_sum, fee, lock_height) assert aggsig.verify_partial(secp, sig_a, public_excess_a, public_excess_sum, public_nonce_sum, fee, lock_height) # Partial signature for B sig_b = aggsig.calculate_partial(secp, excess_b, nonce_b, public_excess_sum, public_nonce_sum, fee, lock_height) assert aggsig.verify_partial(secp, sig_b, public_excess_b, public_excess_sum, public_nonce_sum, fee, lock_height) # Total signature sig = aggsig.add_partials(secp, [sig_a, sig_b], public_nonce_sum) assert aggsig.verify(secp, sig, public_excess_sum, fee, lock_height) rnd_sig = Signature(bytearray(urandom(64))) assert not aggsig.verify(secp, rnd_sig, public_excess_sum, fee, lock_height) public_rnd = SecretKey.random(secp).to_public_key(secp) assert not aggsig.verify(secp, sig, public_rnd, fee, lock_height) assert not aggsig.verify(secp, sig, public_excess_sum, 0, lock_height) assert not aggsig.verify(secp, sig, public_excess_sum, fee, 0)
def fill_swap_signatures(self): buyer = self.role == Role.BUYER assert (buyer and self.stage == Stage.LOCK) or ( not buyer and self.stage == Stage.SWAP), "Incorrect stage" # Public (total) swap excess pos = [ self.swap_output.commit, self.secp.commit_value(self.swap_fee_amount) ] neg = [self.commit, self.secp.commit(0, self.swap_offset)] self.public_swap_excess = self.secp.commit_sum(pos, neg).to_public_key( self.secp) # Partial swap excess swap_blind_sum = BlindSum() swap_blind_sum.sub_child_key(self.partial_child) if buyer: swap_blind_sum.add_child_key(self.swap_child) swap_blind_sum.sub_blinding_factor(self.swap_offset) swap_excess = self.wallet.chain.blind_sum( swap_blind_sum).to_secret_key(self.secp) # Nonce sum public_swap_nonce_sum = PublicKey.from_combination( self.secp, [self.public_swap_nonce, self.foreign_public_swap_nonce]) if not buyer: # Verify that partial signature is valid with swap secret pos = [self.swap_output.commit] neg = [ self.foreign_partial_commit, self.secp.commit(0, self.swap_offset), self.secp.commit_value(self.grin_amount - self.swap_fee_amount) ] foreign_public_partial_swap_excess = self.secp.commit_sum( pos, neg).to_public_key(self.secp) assert aggsig.verify_partial_adaptor( self.secp, self.foreign_partial_swap_adaptor, foreign_public_partial_swap_excess, self.public_lock, self.public_swap_excess, public_swap_nonce_sum, self.swap_fee_amount, self.swap_lock_height), "Partial swap signature not valid" # Partial swap signature self.partial_swap_signature = aggsig.calculate_partial( self.secp, swap_excess, self.swap_nonce, self.public_swap_excess, public_swap_nonce_sum, self.swap_fee_amount, self.swap_lock_height) if buyer: self.partial_swap_adaptor = aggsig.calculate_partial_adaptor( self.secp, swap_excess, self.swap_nonce, self.secret_lock, self.public_swap_excess, public_swap_nonce_sum, self.swap_fee_amount, self.swap_lock_height)
def create_common_nonce(secp: Secp256k1, secret_key: SecretKey, public_key: PublicKey, commit: Commitment) -> SecretKey: common_key = public_key.mul(secp, secret_key) return SecretKey.from_bytearray( secp, bytearray( blake2b(bytes(common_key.to_bytearray(secp)), digest_size=32, key=bytes(commit.to_bytearray(secp))).digest()))
def finalize_swap(self): seller = self.role == Role.SELLER assert (seller and self.stage == Stage.DONE) or ( not seller and self.stage == Stage.SWAP), "Incorrect stage" if seller: self.secret_lock = self.foreign_partial_swap_adaptor.scalar( self.secp).add( self.secp, self.foreign_partial_swap_signature.scalar( self.secp).negate(self.secp)) public_lock = self.secret_lock.to_public_key(self.secp) assert self.public_lock == public_lock, "Invalid secret lock, this should never happen" if self.is_ether_swap(): self.claim = self.secp.sign_recoverable( self.secret_lock, bytearray([0] * 32)) else: swap_input = Input(OutputFeatures.DEFAULT_OUTPUT, self.commit) public_swap_nonce_sum = PublicKey.from_combination( self.secp, [self.public_swap_nonce, self.foreign_public_swap_nonce]) swap_signature = aggsig.add_partials(self.secp, [ self.partial_swap_signature, self.foreign_partial_swap_signature ], public_swap_nonce_sum) assert aggsig.verify( self.secp, swap_signature, self.public_swap_excess, self.swap_fee_amount, self.swap_lock_height), "Unable to verify swap signature" swap_kernel = Kernel(0, self.swap_fee_amount, self.swap_lock_height, None, None) self.swap_tx = Transaction([swap_input], [self.swap_output], [swap_kernel], self.swap_offset) swap_kernel.excess = self.swap_tx.sum_commitments(self.secp) swap_kernel.excess_signature = swap_signature assert self.swap_tx.verify_kernels( self.secp), "Unable to verify swap kernel"
def receive(self, dct: dict): if self.stage is None: if self.role == Role.BUYER: dct['time_start'] = int(time()) self.wallet = Wallet.open(self.secp, dct['wallet']) # Add 'foreign_' prefix to some keys dct.update({ "foreign_partial_commit": dct['partial_commit'], "foreign_public_nonce": dct['public_nonce'], "foreign_public_refund_nonce": dct['public_refund_nonce'] }) dct.pop("partial_commit", None) dct.pop("public_nonce", None) dct.pop("public_refund_nonce", None) # Partial multisig output self.partial_child, self.partial_entry = self.wallet.create_output( dct['grin_amount']) self.partial_entry.mark_locked() self.nonce = SecretKey.random(self.secp) self.refund_nonce = SecretKey.random(self.secp) self.secret_lock = SecretKey.random(self.secp) self.public_lock = self.secret_lock.to_public_key(self.secp) if dct['swap_currency'] == "BTC": self.btc_lock_time = int(time() + 24 * 60 * 60) self.btc_refund_key = SecretKey.random(self.secp) self.public_btc_refund_key = self.btc_refund_key.to_public_key( self.secp) self.load(dct) if self.is_bitcoin_swap(): self.btc_lock_address = self.calculate_btc_lock_address() self.wallet.save() else: raise Exception("This stage doesn't expect an input file") elif self.stage == Stage.INIT: self.stage = Stage.SIGN self.foreign_t_1 = PublicKey.from_hex(self.secp, dct['t_1'].encode()) self.foreign_t_2 = PublicKey.from_hex(self.secp, dct['t_2'].encode()) if self.role == Role.SELLER: self.foreign_partial_commit = Commitment.from_hex( self.secp, dct['partial_commit'].encode()) self.foreign_public_nonce = PublicKey.from_hex( self.secp, dct['public_nonce'].encode()) self.foreign_public_refund_nonce = PublicKey.from_hex( self.secp, dct['public_refund_nonce'].encode()) self.public_lock = PublicKey.from_hex( self.secp, dct['public_lock'].encode()) if self.is_bitcoin_swap(): self.btc_lock_time = int(dct['btc_lock_time']) self.public_btc_refund_key = PublicKey.from_hex( self.secp, dct['public_btc_refund_key']) self.btc_lock_address = self.calculate_btc_lock_address() if self.is_ether_swap(): self.eth_address_lock = ethereum_address( self.secp, self.public_lock).decode() self.eth_contract_address = dct['eth_contract_address'] self.commit = self.secp.commit_sum([ self.foreign_partial_commit, self.wallet.commit(self.partial_entry) ], []) self.foreign_partial_signature = Signature.from_hex( dct['partial_signature'].encode()) self.foreign_partial_refund_signature = Signature.from_hex( dct['partial_refund_signature'].encode()) else: self.foreign_tau_x = SecretKey.from_hex( self.secp, dct['tau_x'].encode()) elif self.stage == Stage.SIGN: self.stage = Stage.LOCK if self.role == Role.SELLER: self.range_proof = RangeProof.from_hex( dct['range_proof'].encode()) else: self.tx_height = dct['tx_height'] self.foreign_public_swap_nonce = PublicKey.from_hex( self.secp, dct['public_swap_nonce'].encode()) elif self.stage == Stage.LOCK: self.stage = Stage.SWAP if self.role == Role.SELLER: self.foreign_public_swap_nonce = PublicKey.from_hex( self.secp, dct['public_swap_nonce'].encode()) self.swap_fee_amount = int(dct['swap_fee_amount']) self.swap_lock_height = int(dct['swap_lock_height']) self.swap_output = Output.from_dict(self.secp, dct['swap_output'], True) self.swap_offset = BlindingFactor.from_hex( dct['swap_offset'].encode()) self.foreign_partial_swap_adaptor = Signature.from_hex( dct['partial_swap_adaptor']) else: self.foreign_partial_swap_signature = Signature.from_hex( dct['partial_swap_signature']) elif self.stage == Stage.SWAP: self.stage = Stage.DONE if self.role == Role.SELLER: self.foreign_partial_swap_signature = Signature.from_hex( dct['partial_swap_signature']) else: raise Exception("Invalid stage")
def load(self, dct=None): seller = self.role == Role.SELLER buyer = not seller from_file = dct is None if from_file: f = open(absolute(self.swap_file), "r") dct = json.loads(f.read()) f.close() self.stage = Stage(dct['stage']) if self.wallet is None: self.wallet = Wallet.open(self.secp, dct['wallet']) self.time_start = int(dct['time_start']) self.grin_amount = int(dct['grin_amount']) self.swap_currency = dct['swap_currency'] self.swap_amount = int(dct['swap_amount']) if seller or self.is_ether_swap(): self.swap_receive_address = dct['swap_receive_address'] self.lock_height = int(dct['lock_height']) self.refund_lock_height = int(dct['refund_lock_height']) self.inputs = [ Input.from_dict(self.secp, x, True) for x in dct['inputs'] ] self.fee_amount = int(dct['fee_amount']) self.refund_fee_amount = int(dct['refund_fee_amount']) self.change_output = Output.from_dict(self.secp, dct['change_output'], True) if from_file: self.partial_entry = self.wallet.get_output(dct['partial_entry']) self.partial_child = self.wallet.derive_from_entry( self.partial_entry) self.partial_commit = self.wallet.commit_with_child_key( 0, self.partial_child) self.offset = BlindingFactor.from_hex(dct['offset'].encode()) self.refund_output = Output.from_dict(self.secp, dct['refund_output'], True) self.refund_offset = BlindingFactor.from_hex( dct['refund_offset'].encode()) if from_file: self.nonce = SecretKey.from_hex(self.secp, dct['nonce'].encode()) self.refund_nonce = SecretKey.from_hex( self.secp, dct['refund_nonce'].encode()) self.public_nonce = self.nonce.to_public_key(self.secp) self.public_refund_nonce = self.refund_nonce.to_public_key(self.secp) if seller: if self.is_bitcoin_swap(): self.swap_cosign = SecretKey.from_hex( self.secp, dct['swap_cosign'].encode()) self.input_entries = [ self.wallet.get_output(x) for x in dct['input_entries'] ] self.input_amount = sum(x.value for x in self.input_entries) self.change_amount = self.input_amount - self.grin_amount - self.fee_amount self.change_entry = self.wallet.get_output(dct['change_entry']) self.change_child = self.wallet.derive_from_entry( self.change_entry) self.refund_entry = self.wallet.get_output(dct['refund_entry']) self.refund_child = self.wallet.derive_from_entry( self.refund_entry) else: if from_file: self.secret_lock = SecretKey.from_hex( self.secp, dct['secret_lock'].encode()) if self.is_bitcoin_swap(): self.btc_refund_key = SecretKey.from_hex( self.secp, dct['btc_refund_key'].encode()) if self.is_bitcoin_swap(): self.public_swap_cosign = self.swap_cosign.to_public_key(self.secp) if seller else \ PublicKey.from_hex(self.secp, dct['public_swap_cosign'].encode()) if self.stage >= Stage.SIGN or buyer: self.foreign_partial_commit = Commitment.from_hex( self.secp, dct['foreign_partial_commit'].encode()) self.foreign_public_nonce = PublicKey.from_hex( self.secp, dct['foreign_public_nonce'].encode()) self.foreign_public_refund_nonce = PublicKey.from_hex( self.secp, dct['foreign_public_refund_nonce'].encode()) if from_file: self.public_lock = PublicKey.from_hex( self.secp, dct['public_lock'].encode()) if self.is_bitcoin_swap(): self.public_btc_refund_key = self.btc_refund_key.to_public_key(self.secp) if buyer else \ PublicKey.from_hex(self.secp, dct['public_btc_refund_key'].encode()) if self.is_ether_swap(): self.eth_address_lock = ethereum_address( self.secp, self.public_lock).decode() self.commit = self.secp.commit_sum([self.foreign_partial_commit, self.wallet.commit(self.partial_entry)], []) if not from_file else \ Commitment.from_hex(self.secp, dct['commit'].encode()) if self.stage >= Stage.SIGN or (buyer and from_file): self.public_excess = PublicKey.from_hex( self.secp, dct['public_excess'].encode()) self.public_refund_excess = PublicKey.from_hex( self.secp, dct['public_refund_excess'].encode()) if self.is_bitcoin_swap(): self.btc_lock_time = int(dct['btc_lock_time']) self.btc_lock_address = Address.from_base58check( dct['btc_lock_address'].encode()) if self.is_ether_swap(): self.eth_contract_address = dct['eth_contract_address'] self.partial_signature = Signature.from_hex( dct['partial_signature'].encode()) self.partial_refund_signature = Signature.from_hex( dct['partial_refund_signature'].encode()) self.t_1 = PublicKey.from_hex(self.secp, dct['t_1'].encode()) self.t_2 = PublicKey.from_hex(self.secp, dct['t_2'].encode()) if self.stage >= Stage.SIGN: self.foreign_t_1 = PublicKey.from_hex(self.secp, dct['foreign_t_1'].encode()) self.foreign_t_2 = PublicKey.from_hex(self.secp, dct['foreign_t_2'].encode()) if seller: self.tau_x = SecretKey.from_hex(self.secp, dct['tau_x'].encode()) self.foreign_partial_signature = Signature.from_hex( dct['foreign_partial_signature'].encode()) self.foreign_partial_refund_signature = Signature.from_hex( dct['foreign_partial_refund_signature'].encode()) if self.is_bitcoin_swap(): self.btc_output_points = [ OutputPoint.from_hex(x.encode()) for x in dct['btc_output_points'] ] else: self.foreign_tau_x = SecretKey.from_hex( self.secp, dct['foreign_tau_x'].encode()) if self.stage >= Stage.LOCK or (self.stage == Stage.SIGN and buyer): self.range_proof = RangeProof.from_hex(dct['range_proof'].encode()) if self.stage >= Stage.LOCK: self.tx_height = dct['tx_height'] self.swap_nonce = SecretKey.from_hex(self.secp, dct['swap_nonce'].encode()) self.public_swap_nonce = self.swap_nonce.to_public_key(self.secp) if buyer: self.swap_entry = self.wallet.get_output(dct['swap_entry']) self.swap_child = self.wallet.derive_from_entry( self.swap_entry) self.partial_swap_adaptor = Signature.from_hex( dct['partial_swap_adaptor'].encode()) if (buyer and self.stage >= Stage.LOCK) or (seller and self.stage >= Stage.SWAP): self.foreign_public_swap_nonce = PublicKey.from_hex( self.secp, dct['foreign_public_swap_nonce'].encode()) self.swap_fee_amount = int(dct['swap_fee_amount']) self.swap_lock_height = int(dct['swap_lock_height']) self.swap_output = Output.from_dict(self.secp, dct['swap_output'], True) self.swap_offset = BlindingFactor.from_hex( dct['swap_offset'].encode()) self.public_swap_excess = PublicKey.from_hex( self.secp, dct['public_swap_excess'].encode()) self.partial_swap_signature = Signature.from_hex( dct['partial_swap_signature'].encode()) if seller and self.stage >= Stage.SWAP: self.foreign_partial_swap_adaptor = Signature.from_hex( dct['foreign_partial_swap_adaptor'].encode())
def finalize_swap(self): seller = self.role == Role.SELLER assert (seller and self.stage == Stage.DONE) or ( not seller and self.stage == Stage.SWAP), "Incorrect stage" if seller: self.secret_lock = self.foreign_partial_swap_adaptor.scalar( self.secp).add( self.secp, self.foreign_partial_swap_signature.scalar( self.secp).negate(self.secp)) public_lock = self.secret_lock.to_public_key(self.secp) assert self.public_lock == public_lock, "Invalid secret lock, this should never happen" if self.is_bitcoin_swap(): tx = BitcoinTransaction(2, [], [], int(time())) input_script = self.generate_btc_script() for output_point in self.btc_output_points: tx.add_input( BitcoinInput(output_point.txid, output_point.index, input_script, bytearray(), None)) output = BitcoinOutput( 1, Script.p2( Address.from_base58check( self.swap_receive_address.encode()))) tx.add_output(output) tx_size = len(tx.to_bytearray()) + 270 * len( self.btc_output_points) # estimate total tx size fee = 2 * tx_size # 2 sat/B output.value = self.swap_amount - fee for i in range(len(tx.inputs)): signature_a = tx.raw_signature(self.secp, i, self.swap_cosign) signature_b = tx.raw_signature(self.secp, i, self.secret_lock) prev_script = self.generate_btc_script() script_sig = bytearray() script_sig.append(OP_FALSE) script_sig.extend(script_write_bytes(len(signature_a))) script_sig.extend(signature_a) script_sig.extend(script_write_bytes(len(signature_b))) script_sig.extend(signature_b) script_sig.append(OP_FALSE) script_sig.extend(script_write_bytes(len(prev_script))) script_sig.extend(prev_script) tx.inputs[i].script_sig = script_sig self.claim = hexlify(tx.to_bytearray()) if self.is_ether_swap(): self.claim = self.secp.sign_recoverable( self.secret_lock, bytearray([0] * 32)) else: swap_input = Input(OutputFeatures.DEFAULT_OUTPUT, self.commit) public_swap_nonce_sum = PublicKey.from_combination( self.secp, [self.public_swap_nonce, self.foreign_public_swap_nonce]) swap_signature = aggsig.add_partials(self.secp, [ self.partial_swap_signature, self.foreign_partial_swap_signature ], public_swap_nonce_sum) assert aggsig.verify( self.secp, swap_signature, self.public_swap_excess, self.swap_fee_amount, self.swap_lock_height), "Unable to verify swap signature" swap_kernel = Kernel(0, self.swap_fee_amount, self.swap_lock_height, None, None) self.swap_tx = Transaction([swap_input], [self.swap_output], [swap_kernel], self.swap_offset) swap_kernel.excess = self.swap_tx.sum_commitments(self.secp) swap_kernel.excess_signature = swap_signature assert self.swap_tx.verify_kernels( self.secp), "Unable to verify swap kernel"
def fill_signatures(self): seller = self.role == Role.SELLER assert (not seller and self.stage == Stage.INIT) or ( seller and self.stage == Stage.SIGN), "Incorrect stage" # Public (total) excess pos = [ self.commit, self.change_output.commit, self.secp.commit_value(self.fee_amount) ] neg = [x.commit for x in self.inputs] neg.append(self.secp.commit(0, self.offset)) self.public_excess = self.secp.commit_sum(pos, neg).to_public_key(self.secp) # Partial excess blind_sum = BlindSum() blind_sum.add_child_key(self.partial_child) if seller: blind_sum.add_child_key(self.change_child) for entry in self.input_entries: blind_sum.sub_child_key(self.wallet.derive_from_entry(entry)) blind_sum.sub_blinding_factor(self.offset) excess = self.wallet.chain.blind_sum(blind_sum).to_secret_key( self.secp) # Partial signature public_nonce_sum = PublicKey.from_combination( self.secp, [self.public_nonce, self.foreign_public_nonce]) self.partial_signature = aggsig.calculate_partial( self.secp, excess, self.nonce, self.public_excess, public_nonce_sum, self.fee_amount, self.lock_height) # First step of multi party bullet proof proof_builder = TwoPartyBulletProof( self.secp, self.partial_child.key, self.foreign_partial_commit.to_public_key(self.secp), self.grin_amount, self.commit) self.t_1, self.t_2 = proof_builder.round_1() if seller: proof_builder.fill_round_1(self.foreign_t_1, self.foreign_t_2) self.tau_x = proof_builder.round_2() # Public (total) refund excess pos = [ self.refund_output.commit, self.secp.commit_value(self.refund_fee_amount) ] neg = [self.commit, self.secp.commit(0, self.refund_offset)] self.public_refund_excess = self.secp.commit_sum( pos, neg).to_public_key(self.secp) # Partial refund excess refund_blind_sum = BlindSum() refund_blind_sum.sub_child_key(self.partial_child) if seller: refund_blind_sum.add_child_key(self.refund_child) refund_blind_sum.sub_blinding_factor(self.refund_offset) refund_excess = self.wallet.chain.blind_sum( refund_blind_sum).to_secret_key(self.secp) # Partial refund signature public_refund_nonce_sum = PublicKey.from_combination( self.secp, [self.public_refund_nonce, self.foreign_public_refund_nonce]) self.partial_refund_signature = aggsig.calculate_partial( self.secp, refund_excess, self.refund_nonce, self.public_refund_excess, public_refund_nonce_sum, self.refund_fee_amount, self.refund_lock_height)
def test_public_key(): secp = Secp256k1(None, FLAG_ALL) # (de)serialization secret_key = SecretKey.random(secp) public_key = secret_key.to_public_key(secp) public_key_2 = PublicKey.from_bytearray(secp, public_key.to_bytearray(secp)) assert public_key == public_key_2 # (a+b)*G = a*G + b*G secret_key_a = SecretKey.random(secp) secret_key_b = SecretKey.random(secp) secret_key_a_b = secret_key_a.add(secp, secret_key_b) public_key_a = secret_key_a.to_public_key(secp) public_key_b = secret_key_b.to_public_key(secp) public_key_a_b = secret_key_a_b.to_public_key(secp) public_key_a_b_2 = PublicKey.from_combination(secp, [public_key_a, public_key_b]) public_key_a_b_3 = public_key_a.add_scalar(secp, secret_key_b) assert public_key_a_b == public_key_a_b_2 assert public_key_a_b == public_key_a_b_3 # (ab)*G = a(b*G) = b(a*G) secret_key_a = SecretKey.random(secp) secret_key_b = SecretKey.random(secp) secret_key_ab = secret_key_a.mul(secp, secret_key_b) public_key_ab = secret_key_ab.to_public_key(secp) public_key_ab_2 = secret_key_a.to_public_key(secp) public_key_ab_2.mul_assign(secp, secret_key_b) public_key_ab_3 = secret_key_b.to_public_key(secp) public_key_ab_3.mul_assign(secp, secret_key_a) assert public_key_ab == public_key_ab_2 assert public_key_ab == public_key_ab_3 # (c(a+b))*G = c(a*G) + c(b*G) secret_key_a = SecretKey.random(secp) secret_key_b = SecretKey.random(secp) secret_key_c = SecretKey.random(secp) secret_key_ca_b = secret_key_a.add(secp, secret_key_b) secret_key_ca_b.mul_assign(secp, secret_key_c) public_key_ca_b = secret_key_ca_b.to_public_key(secp) public_key_ca = secret_key_a.to_public_key(secp) public_key_ca.mul_assign(secp, secret_key_c) public_key_cb = secret_key_b.to_public_key(secp) public_key_cb.mul_assign(secp, secret_key_c) public_key_ca_cb = public_key_ca.add(secp, public_key_cb) assert public_key_ca_b == public_key_ca_cb # (a+b+c)*G = a*G + b*G + c*G secret_key_a = SecretKey.random(secp) secret_key_b = SecretKey.random(secp) secret_key_c = SecretKey.random(secp) secret_key_a_b_c = secret_key_a.add(secp, secret_key_b) secret_key_a_b_c.add_assign(secp, secret_key_c) public_key_a_b_c = secret_key_a_b_c.to_public_key(secp) public_key_a = secret_key_a.to_public_key(secp) public_key_b = secret_key_b.to_public_key(secp) public_key_c = secret_key_c.to_public_key(secp) public_key_a_b_c_2 = PublicKey.from_combination( secp, [public_key_a, public_key_b, public_key_c]) assert public_key_a_b_c == public_key_a_b_c_2
def from_bytearray(secp: Secp256k1, data: bytearray): assert len(data) == 78 return ExtendedPublicKey(data[:4], data[4], Fingerprint.from_bytearray(data[5:9]), ChildNumber.from_bytearray(data[9:13]), PublicKey.from_bytearray(secp, data[45:78]), ChainCode.from_bytearray(data[13:45]))