def report(niter=50, design="random", **kwargs): if design == "fixed": X, _, _, _, _ = gaussian_instance(**kwargs) kwargs.update({'X': X}) kwargs.update({'cross_validation': True, 'condition_on_CVR': False}) intervals_report = reports.reports['test_naive'] screened_results = reports.collect_multiple_runs( intervals_report['test'], intervals_report['columns'], niter, reports.summarize_all, **kwargs) screened_results.to_pickle("naive.pkl") results = pd.read_pickle("naive.pkl") fig = reports.naive_pvalue_plot(results) #fig = reports.pvalue_plot(results, label="Naive p-values") fig.suptitle("Naive p-values", fontsize=20) fig.savefig('naive_pvalues.pdf')
def report(niter=50): # these are all our null tests fn_names = [ 'test_overall_null_two_queries', 'test_one_inactive_coordinate_handcoded' ] dfs = [] for fn in fn_names: fn = reports.reports[fn] dfs.append( reports.collect_multiple_runs(fn['test'], fn['columns'], niter, reports.summarize_all)) dfs = pd.concat(dfs) fig = reports.pvalue_plot(dfs, colors=['r', 'g']) fig = reports.naive_pvalue_plot(dfs, fig=fig, colors=['k', 'b']) fig.savefig('Mest_pvalues.pdf') # will have both bootstrap and CLT on plot
def report(niter=100, design="random", **kwargs): if design == "fixed": X, _, _, _, _ = gaussian_instance(**kwargs) kwargs.update({'X': X}) intervals_report = reports.reports['test_lee_et_al'] screened_results = reports.collect_multiple_runs( intervals_report['test'], intervals_report['columns'], niter, reports.summarize_all, **kwargs) screened_results.to_pickle("lee_et_al_pivots.pkl") results = pd.read_pickle("lee_et_al_pivots.pkl") #naive plus lee et al. fig = reports.pivot_plot_plus_naive(results) fig.suptitle("Lee et al. and naive p-values", fontsize=20) fig.savefig('lee_et_al_pivots.pdf') # naive only fig1 = reports.naive_pvalue_plot(results) fig1.suptitle("Naive p-values", fontsize=20) fig1.savefig('naive_pvalues.pdf')