def main(): try: # get parameters from tuner RECEIVED_PARAMS = nni.get_next_parameter() LOG.debug(RECEIVED_PARAMS) PARAMS = default_params() PARAMS.update(RECEIVED_PARAMS) LOG.debug(PARAMS) method = sys.argv[1] path = sys.argv[2] r = sys.argv[3] eps_heavy = str(float(sys.argv[4])) eps_light = str(float(sys.argv[5])) # s_path = '/home/haipeng/Documents/dataset/selected/'+method + '/' + method + '_video_bin_'+path+'_kb.csv' # print('score_path: '+ s_path) # selected_f = pd.read_csv(s_path,header=None) # score_list = selected_f.sort_values(selected_f.columns[1], ascending=False) # selected_col = score_list.iloc[:PARAMS['data_dim'],0] # selected_col = sorted(selected_col) # cols = [i for i in range(500,3000)] # X_train, y_train, X_test, y_test, num_classes = su.load_data('/home/haipeng/Documents/dataset/Video_dataset/KB/video_bin_'+path+'_kb.csv', PARAMS['data_dim']) root_p = '/home/haipeng/Documents/dataset/Video_dataset/' X_train, y_train, X_test, y_test, num_classes = su.load_data(root_p + 'KB/lap_weight/' + method + '_' + str(path) +'_video_bin_dp_' + r + '_' + eps_heavy +'_'+eps_light+ '.csv', PARAMS['data_dim']) print('num_classes is ' + str(num_classes)) X_train=np.expand_dims(X_train, axis=2) X_test=np.expand_dims(X_test, axis=2) model=built_and_compile(PARAMS, num_classes) m=train(model, PARAMS, X_train, y_train, X_test, y_test) test(PARAMS, m, X_test, y_test, num_classes, path, method, r, eps_heavy, eps_light) except Exception as exception: LOG.exception(exception) raise
def main(step, dim): selected_col = [i for i in range(1, 401)] data_path = sys.argv[3] model_path = sys.argv[4] X_train, y_train, X_test, y_test, num_classes = su.load_data( '/home/haipeng/Documents/dataset/Video_dataset/KB/video_bin_' + path + '_kb.csv', dim) permutation(X_test, y_test, step, dim, model_path)
def main(): # method = sys.argv[1] method = 'mrmr' model_path = '/home/lhp/PycharmProjects/dl_models/cnn_video_bin.h5' model = load_model(model_path) # path = '/home/lhp/PycharmProjects/dataset/Alexa_dataset/numeric_class.csv' # selected_f = pd.read_csv(path,header=None) # selected_col = selected_f.iloc[:,0] # selected_col = sorted(selected_col) selected_col = [i for i in range(1, 721)] X_train, y_train, X_test, y_test, num_classes = su.load_data( 'video_bin_dp_5e-5_720.csv', selected_col) # PARAMS = default_params() # test(PARAMS, X_test, y_test, num_classes) X_test = np.expand_dims(X_test, axis=2) score, acc = model.evaluate(X_test, y_test, batch_size=100) print(f"Model Performance: {score, acc}")
def main(): try: # get parameters from tuner RECEIVED_PARAMS = nni.get_next_parameter() LOG.debug(RECEIVED_PARAMS) PARAMS = default_params() PARAMS.update(RECEIVED_PARAMS) LOG.debug(PARAMS) # cols = [i for i in range(500,3000)] X_train, y_train, X_test, y_test, num_classes = su.load_data( '/home/haipeng/Documents/dataset/cache_dataset/linux_tor.csv', PARAMS['data_dim']) #X_train, y_train, X_test, y_test, num_classes = su.load_sel_data( # '/home/haipeng/Documents/dataset/'+path, cols) print('num_classes is ' + str(num_classes)) X_train = np.expand_dims(X_train, axis=2) X_test = np.expand_dims(X_test, axis=2) model = built_and_compile(PARAMS, num_classes) m = train(model, PARAMS, X_train, y_train, X_test, y_test) test(PARAMS, m, X_test, y_test, num_classes) except Exception as exception: LOG.exception(exception) raise
def main(): selected_col = [i for i in range(1, 401)] X_train, y_train, X_test, y_test, num_classes = su.load_data( '/home/lhp/PycharmProjects/dataset/Alexa_dataset/generic_class.csv', selected_col) permutation(X_test, y_test)