예제 #1
0
    def __init__(self, use_lanelines=True, wide_camera=False):
        self.use_lanelines = use_lanelines
        self.LP = LanePlanner(wide_camera)
        self.DH = DesireHelper()

        self.last_cloudlog_t = 0
        self.solution_invalid_cnt = 0

        self.path_xyz = np.zeros((TRAJECTORY_SIZE, 3))
        self.path_xyz_stds = np.ones((TRAJECTORY_SIZE, 3))
        self.plan_yaw = np.zeros((TRAJECTORY_SIZE, ))
        self.t_idxs = np.arange(TRAJECTORY_SIZE)
        self.y_pts = np.zeros(TRAJECTORY_SIZE)

        self.lat_mpc = LateralMpc()
        self.reset_mpc(np.zeros(4))
예제 #2
0
    def __init__(self, CP, use_lanelines=True, wide_camera=False):
        self.use_lanelines = use_lanelines
        self.LP = LanePlanner(wide_camera)
        self.DH = DesireHelper()

        # Vehicle model parameters used to calculate lateral movement of car
        self.factor1 = CP.wheelbase - CP.centerToFront
        self.factor2 = (CP.centerToFront * CP.mass) / (CP.wheelbase *
                                                       CP.tireStiffnessRear)
        self.last_cloudlog_t = 0
        self.solution_invalid_cnt = 0

        self.path_xyz = np.zeros((TRAJECTORY_SIZE, 3))
        self.path_xyz_stds = np.ones((TRAJECTORY_SIZE, 3))
        self.plan_yaw = np.zeros((TRAJECTORY_SIZE, ))
        self.plan_curv_rate = np.zeros((TRAJECTORY_SIZE, ))
        self.t_idxs = np.arange(TRAJECTORY_SIZE)
        self.y_pts = np.zeros(TRAJECTORY_SIZE)

        self.lat_mpc = LateralMpc()
        self.reset_mpc(np.zeros(4))
예제 #3
0
class LateralPlanner:
    def __init__(self, use_lanelines=True, wide_camera=False):
        self.use_lanelines = use_lanelines
        self.LP = LanePlanner(wide_camera)
        self.DH = DesireHelper()

        self.last_cloudlog_t = 0
        self.solution_invalid_cnt = 0

        self.path_xyz = np.zeros((TRAJECTORY_SIZE, 3))
        self.path_xyz_stds = np.ones((TRAJECTORY_SIZE, 3))
        self.plan_yaw = np.zeros((TRAJECTORY_SIZE, ))
        self.t_idxs = np.arange(TRAJECTORY_SIZE)
        self.y_pts = np.zeros(TRAJECTORY_SIZE)

        self.lat_mpc = LateralMpc()
        self.reset_mpc(np.zeros(4))

    def reset_mpc(self, x0=np.zeros(4)):
        self.x0 = x0
        self.lat_mpc.reset(x0=self.x0)

    def update(self, sm):
        v_ego = sm['carState'].vEgo
        measured_curvature = sm['controlsState'].curvature

        # Parse model predictions
        md = sm['modelV2']
        self.LP.parse_model(md)
        if len(md.position.x) == TRAJECTORY_SIZE and len(
                md.orientation.x) == TRAJECTORY_SIZE:
            self.path_xyz = np.column_stack(
                [md.position.x, md.position.y, md.position.z])
            self.t_idxs = np.array(md.position.t)
            self.plan_yaw = list(md.orientation.z)
        if len(md.position.xStd) == TRAJECTORY_SIZE:
            self.path_xyz_stds = np.column_stack(
                [md.position.xStd, md.position.yStd, md.position.zStd])

        # Lane change logic
        lane_change_prob = self.LP.l_lane_change_prob + self.LP.r_lane_change_prob
        self.DH.update(sm['carState'], sm['controlsState'].active,
                       lane_change_prob)

        # Turn off lanes during lane change
        if self.DH.desire == log.LateralPlan.Desire.laneChangeRight or self.DH.desire == log.LateralPlan.Desire.laneChangeLeft:
            self.LP.lll_prob *= self.DH.lane_change_ll_prob
            self.LP.rll_prob *= self.DH.lane_change_ll_prob

        # Calculate final driving path and set MPC costs
        if self.use_lanelines:
            d_path_xyz = self.LP.get_d_path(v_ego, self.t_idxs, self.path_xyz)
            self.lat_mpc.set_weights(MPC_COST_LAT.PATH, MPC_COST_LAT.HEADING,
                                     MPC_COST_LAT.STEER_RATE)
        else:
            d_path_xyz = self.path_xyz
            # Heading cost is useful at low speed, otherwise end of plan can be off-heading
            heading_cost = interp(v_ego, [5.0, 10.0],
                                  [MPC_COST_LAT.HEADING, 0.15])
            self.lat_mpc.set_weights(MPC_COST_LAT.PATH, heading_cost,
                                     MPC_COST_LAT.STEER_RATE)

        y_pts = np.interp(v_ego * self.t_idxs[:LAT_MPC_N + 1],
                          np.linalg.norm(d_path_xyz, axis=1), d_path_xyz[:, 1])
        heading_pts = np.interp(v_ego * self.t_idxs[:LAT_MPC_N + 1],
                                np.linalg.norm(self.path_xyz, axis=1),
                                self.plan_yaw)
        self.y_pts = y_pts

        assert len(y_pts) == LAT_MPC_N + 1
        assert len(heading_pts) == LAT_MPC_N + 1
        # self.x0[4] = v_ego
        p = np.array([v_ego, CAR_ROTATION_RADIUS])
        self.lat_mpc.run(self.x0, p, y_pts, heading_pts)
        # init state for next
        # mpc.u_sol is the desired curvature rate given x0 curv state.
        # with x0[3] = measured_curvature, this would be the actual desired rate.
        # instead, interpolate x_sol so that x0[3] is the desired curvature for lat_control.
        self.x0[3] = interp(DT_MDL, self.t_idxs[:LAT_MPC_N + 1],
                            self.lat_mpc.x_sol[:, 3])

        #  Check for infeasible MPC solution
        mpc_nans = np.isnan(self.lat_mpc.x_sol[:, 3]).any()
        t = sec_since_boot()
        if mpc_nans or self.lat_mpc.solution_status != 0:
            self.reset_mpc()
            self.x0[3] = measured_curvature
            if t > self.last_cloudlog_t + 5.0:
                self.last_cloudlog_t = t
                cloudlog.warning("Lateral mpc - nan: True")

        if self.lat_mpc.cost > 20000. or mpc_nans:
            self.solution_invalid_cnt += 1
        else:
            self.solution_invalid_cnt = 0

    def publish(self, sm, pm):
        plan_solution_valid = self.solution_invalid_cnt < 2
        plan_send = messaging.new_message('lateralPlan')
        plan_send.valid = sm.all_checks(
            service_list=['carState', 'controlsState', 'modelV2'])

        lateralPlan = plan_send.lateralPlan
        lateralPlan.modelMonoTime = sm.logMonoTime['modelV2']
        lateralPlan.laneWidth = float(self.LP.lane_width)
        lateralPlan.dPathPoints = self.y_pts.tolist()
        lateralPlan.psis = self.lat_mpc.x_sol[0:CONTROL_N, 2].tolist()
        lateralPlan.curvatures = self.lat_mpc.x_sol[0:CONTROL_N, 3].tolist()
        lateralPlan.curvatureRates = [
            float(x) for x in self.lat_mpc.u_sol[0:CONTROL_N - 1]
        ] + [0.0]
        lateralPlan.lProb = float(self.LP.lll_prob)
        lateralPlan.rProb = float(self.LP.rll_prob)
        lateralPlan.dProb = float(self.LP.d_prob)

        lateralPlan.mpcSolutionValid = bool(plan_solution_valid)
        lateralPlan.solverExecutionTime = self.lat_mpc.solve_time

        lateralPlan.desire = self.DH.desire
        lateralPlan.useLaneLines = self.use_lanelines
        lateralPlan.laneChangeState = self.DH.lane_change_state
        lateralPlan.laneChangeDirection = self.DH.lane_change_direction

        pm.send('lateralPlan', plan_send)