def detect(self, dsamples, receiver, offset): # start looking at dsamples[offset] for the preamble sequence sample_seq = receiver.mapper.bits2samples(self.barker()) local_carrier_result = sendrecv.local_carrier(receiver.fc, len(sample_seq), receiver.samplerate) waveform = numpy.multiply(sample_seq, local_carrier_result) demodulated_waveform = receiver.demodulate(waveform) search_length = self.barkerlen()*3*receiver.mapper.spb index = self.correlate(dsamples, demodulated_waveform[offset:(offset+search_length)]) return offset + index
def detect(self, dsamples, receiver, offset): # start looking at dsamples[offset] for the preamble sequence sample_seq = receiver.mapper.bits2samples(self.barker()) local_carrier_result = sendrecv.local_carrier(receiver.fc, len(sample_seq), receiver.samplerate) waveform = numpy.multiply(sample_seq, local_carrier_result) demodulated_waveform = receiver.demodulate(waveform) search_length = self.barkerlen() * 3 * receiver.mapper.spb index = self.correlate( dsamples, demodulated_waveform[offset:(offset + search_length)]) return offset + index
def quadrature(samples, carrier_freq, config): quadcarrier = sendrecv.local_carrier(carrier_freq, len(samples), config.samplerate, "demodquad") return numpy.multiply(samples, quadcarrier)
def heterodyne(samples, carrier_freq, config): sample_rate = config.samplerate local_carrier = sendrecv.local_carrier(carrier_freq, len(samples), sample_rate) return numpy.multiply(samples, local_carrier)