예제 #1
0
def multiple_model_corrector(model_bank_in,
                             Yi,
                             ti,
                             sun_gcrf,
                             sensor,
                             EOP_data,
                             XYs_df,
                             method='mmae',
                             alpha=1e-4):

    # Initialize Output
    model_bank = copy.deepcopy(model_bank_in)

    # Compute update components
    wbar = []
    beta_list = []
    for model_id in sorted(model_bank_in.keys()):

        # Retrieve model parameters
        spacecraftConfig = model_bank_in[model_id]['spacecraftConfig']
        surfaces = model_bank_in[model_id]['surfaces']
        Xbar = spacecraftConfig['X']
        Pbar = spacecraftConfig['covar']
        n = len(Xbar)

        print(model_id)
        print(Pbar)
        print(np.linalg.eig(Pbar))

        # Corrector
        if spacecraftConfig['type'] == '3DoF':
            X, P, beta = ukf_3dof_corrector(Xbar, Pbar, Yi, ti, n, alpha,
                                            sun_gcrf, sensor, EOP_data, XYs_df,
                                            spacecraftConfig, surfaces)

        elif spacecraftConfig['type'] == '3att':
            X, P, beta = ukf_3att_corrector(Xbar, Pbar, Yi, ti, n, alpha,
                                            sun_gcrf, sensor, EOP_data, XYs_df,
                                            spacecraftConfig, surfaces)

        elif spacecraftConfig['type'] == '6DoF':
            X, P, beta = ukf_6dof_corrector(Xbar, Pbar, qmean, Yi, ti, n,
                                            alpha, sun_gcrf, sensor, EOP_data,
                                            XYs_df, spacecraftConfig, surfaces)

        else:
            print('Spacecraft Type Error')
            print(spacecraftConfig)
            break

        print('\n\n Corrector Step')
        print(ti)
        print(X)
        print(P)
        print(beta)

        # Compute post-fit residuals
        Ybar_post = compute_measurement(X, sun_gcrf, sensor, spacecraftConfig,
                                        surfaces, ti, EOP_data,
                                        sensor['meas_types'], XYs_df)
        resids = Yi - Ybar_post

        print('post')
        print(model_id)
        print('Ybar_post', Ybar_post)
        print('resids', resids)

        # Store weights and likelihoods for weight updates
        wbar.append(model_bank_in[model_id]['weight'])
        beta_list.append(beta)

        # Update outputs for each model
        model_bank[model_id]['spacecraftConfig']['time'] = ti
        model_bank[model_id]['spacecraftConfig']['X'] = X
        model_bank[model_id]['spacecraftConfig']['covar'] = P
        model_bank[model_id]['resids'] = resids

    # Update weights per mulitple model method
    wf_list = multiple_model_weights(wbar, beta_list, method)

    print('Update Weights')
    print('wbar', wbar)
    print('beta_list', beta_list)
    print('wf_list', wf_list)

    # Update model bank
    ii = 0
    for model_id in sorted(model_bank_in.keys()):
        model_bank[model_id]['weight'] = np.array(wf_list[ii])
        ii += 1

    return model_bank
예제 #2
0
파일: estimation.py 프로젝트: gehly/metis
def ukf_6dof_corrector(Xgrp, Pbar, qmean, Yi, ti, n, alpha, sun_gcrf, sensor,
                       EOP_data, XYs_df, spacecraftConfig, surfaces):

    #Compute Weights
    beta = 2.
    kappa = 3. - 12.
    lam = alpha**2 * (12. + kappa) - 12.
    gam = np.sqrt(12. + lam)

    Wm = 1. / (2. * (12. + lam)) * np.ones((1, 2 * 12))
    Wm = list(Wm.flatten())
    Wc = copy.copy(Wm)
    Wm.insert(0, lam / (12. + lam))
    Wc.insert(0, lam / (12. + lam) + (1 - alpha**2 + beta))
    Wm = np.asarray(Wm)
    diagWc = np.diag(Wc)

    # Sensor parameters
    meas_types = sensor['meas_types']
    sigma_dict = sensor['sigma_dict']
    p = len(meas_types)

    # Measurement noise
    var = []
    for mt in meas_types:
        var.append(sigma_dict[mt]**2.)
    Rk = np.diag(var)

    # Recompute sigma points to incorporate process noise
    sqP = np.linalg.cholesky(Pbar)
    Xrep = np.tile(Xgrp, (1, 12))
    chi_grp = np.concatenate((Xgrp, Xrep + (gam * sqP), Xrep - (gam * sqP)),
                             axis=1)
    chi_diff = chi_grp - np.dot(Xgrp, np.ones((1, 25)))

    # Compute sigma points with quaternions
    chi_quat = np.zeros((13, 25))
    chi_quat[0:6, :] = chi_grp[0:6, :]
    chi_quat[10:13, :] = chi_grp[9:12, :]
    chi_quat[6:10, 0] = qmean.flatten()
    for jj in range(24):
        dp = chi_grp[6:9, jj + 1].reshape(3, 1)
        dq = att.grp2quat(dp, 1)
        qj = att.quat_composition(dq, qmean)
        chi_quat[6:10, jj + 1] = qj.flatten()

    # Computed measurements
    meas_bar = np.zeros((p, 25))
    for jj in range(chi_quat.shape[1]):
        Xj = chi_quat[:, jj]
        Yj = compute_measurement(Xj, sun_gcrf, sensor, spacecraftConfig,
                                 surfaces, ti, EOP_data, sensor['meas_types'],
                                 XYs_df)
        meas_bar[:, jj] = Yj.flatten()

#        print(jj)
#        print(Yj)

#    print(Wm)
    Ybar = np.dot(meas_bar, Wm.T)
    Ybar = np.reshape(Ybar, (p, 1))
    Y_diff = meas_bar - np.dot(Ybar, np.ones((1, 25)))
    Pyy = np.dot(Y_diff, np.dot(diagWc, Y_diff.T))
    Pxy = np.dot(chi_diff, np.dot(diagWc, Y_diff.T))

    Pyy += Rk

    #    print(meas_bar)
    #    print(Yi)
    #    print(Ybar)
    #    print(Pyy)

    # Measurement Update
    K = np.dot(Pxy, np.linalg.inv(Pyy))
    Xgrp = Xgrp + np.dot(K, Yi - Ybar)

    # Compute updated quaternion and full state vector
    dp = Xgrp[6:9].reshape(3, 1)
    dq = att.grp2quat(dp, 1)
    q = att.quat_composition(dq, qmean)
    X = np.zeros((13, 1))
    X[0:6] = Xgrp[0:6]
    X[6:10] = q
    X[10:13] = Xgrp[9:12]

    #        # Regular update
    #        P = Pbar - np.dot(K, np.dot(Pyy, K.T))
    #
    #        # Re-symmetric pos def
    #        P = 0.5 * (P + P.T)

    # Joseph Form
    cholPbar = np.linalg.inv(np.linalg.cholesky(Pbar))
    invPbar = np.dot(cholPbar.T, cholPbar)
    P1 = (np.identity(12) - np.dot(np.dot(K, np.dot(Pyy, K.T)), invPbar))
    P = np.dot(P1, np.dot(Pbar, P1.T)) + np.dot(K, np.dot(Rk, K.T))

    #    print('posterior')
    #    print(X)
    #    print(P)
    #    print(Ybar)
    #    print(Yi - Ybar)
    #        print(Pyy)
    #        print(Rk)
    #        print(Pxy)

    #    # Gaussian Likelihood
    beta = compute_gaussian(Yi, Ybar, Pyy)
    #    beta_list.append(beta)

    return X, P, beta
예제 #3
0
파일: estimation.py 프로젝트: gehly/metis
def ukf_3att_corrector(Xbar, Pbar, Yi, ti, n, alpha, sun_gcrf, sensor,
                       EOP_data, XYs_df, spacecraftConfig, surfaces):

    #Compute Weights
    n = 6
    beta = 2.
    kappa = 3. - n
    lam = alpha**2 * (n + kappa) - n
    gam = np.sqrt(n + lam)

    Wm = 1. / (2. * (n + lam)) * np.ones((1, 2 * n))
    Wm = list(Wm.flatten())
    Wc = copy.copy(Wm)
    Wm.insert(0, lam / (n + lam))
    Wc.insert(0, lam / (n + lam) + (1 - alpha**2 + beta))
    Wm = np.asarray(Wm)
    diagWc = np.diag(Wc)

    # Sensor parameters
    meas_types = sensor['meas_types']
    sigma_dict = sensor['sigma_dict']
    p = len(meas_types)

    # Measurement noise
    var = []
    for mt in meas_types:
        var.append(sigma_dict[mt]**2.)
    Rk = np.diag(var)

    # Recompute sigma points to incorporate process noise
    sqP = np.linalg.cholesky(Pbar)
    Xpv = Xbar[0:6].reshape(6, 1)
    Xatt = Xbar[6:13].reshape(7, 1)
    Xrep = np.tile(Xpv, (1, n))
    chi_bar = np.concatenate((Xpv, Xrep + (gam * sqP), Xrep - (gam * sqP)),
                             axis=1)
    chi_diff = chi_bar - np.dot(Xpv, np.ones((1, (2 * n + 1))))

    # Computed measurements
    meas_bar = np.zeros((p, 2 * n + 1))
    for jj in range(chi_bar.shape[1]):
        Xj = chi_bar[:, jj].reshape(6, 1)
        Xj_full = np.concatenate((Xj, Xatt), axis=0)
        Yj = compute_measurement(Xj_full, sun_gcrf, sensor, spacecraftConfig,
                                 surfaces, ti, EOP_data, sensor['meas_types'],
                                 XYs_df)
        meas_bar[:, jj] = Yj.flatten()

    Ybar = np.dot(meas_bar, Wm.T)
    Ybar = np.reshape(Ybar, (p, 1))
    Y_diff = meas_bar - np.dot(Ybar, np.ones((1, (2 * n + 1))))
    Pyy = np.dot(Y_diff, np.dot(diagWc, Y_diff.T))
    Pxy = np.dot(chi_diff, np.dot(diagWc, Y_diff.T))

    Pyy += Rk

    # Measurement Update
    K = np.dot(Pxy, np.linalg.inv(Pyy))
    X = Xpv + np.dot(K, Yi - Ybar)
    X = np.concatenate((X, Xatt), axis=0)

    #        # Regular update
    #        P = Pbar - np.dot(K, np.dot(Pyy, K.T))
    #
    #        # Re-symmetric pos def
    #        P = 0.5 * (P + P.T)

    # Joseph Form
    cholPbar = np.linalg.inv(np.linalg.cholesky(Pbar))
    invPbar = np.dot(cholPbar.T, cholPbar)
    P1 = (np.identity(6) - np.dot(np.dot(K, np.dot(Pyy, K.T)), invPbar))
    P = np.dot(P1, np.dot(Pbar, P1.T)) + np.dot(K, np.dot(Rk, K.T))

    print('posterior')
    print(Xbar)
    print(X)
    print(P)
    print(Ybar)
    print(Yi - Ybar)
    #        print(Pyy)
    #        print(Rk)
    #        print(Pxy)

    #    # Gaussian Likelihood
    beta = compute_gaussian(Yi, Ybar, Pyy)
    #    beta_list.append(beta)

    return X, P, beta
예제 #4
0
파일: estimation.py 프로젝트: gehly/metis
def unscented_kalman_filter(model_params_file,
                            sensor_file,
                            meas_file,
                            ephemeris,
                            ts,
                            alpha=1.):
    '''
    
    '''

    # Load model parameters
    pklFile = open(model_params_file, 'rb')
    data = pickle.load(pklFile)
    spacecraftConfig = data[0]
    forcesCoeff = data[1]
    surfaces = data[2]
    eop_alldata = data[3]
    XYs_df = data[4]
    pklFile.close()

    # Load sensor data
    pklFile = open(sensor_file, 'rb')
    data = pickle.load(pklFile)
    sensor_dict = data[0]
    pklFile.close()

    # Load measurement data
    pklFile = open(meas_file, 'rb')
    data = pickle.load(pklFile)
    meas_dict = data[0]
    pklFile.close()

    meas_times = sorted(list(meas_dict.keys()))

    #    # Force model parameters
    #    dragCoeff = forcesCoeff['dragCoeff']
    #    order = forcesCoeff['order']
    #    degree = forcesCoeff['degree']
    #    emissivity = forcesCoeff['emissivity']

    # Sun and earth data
    earth = ephemeris['earth']
    sun = ephemeris['sun']

    #Number of states and observations per epoch
    n = len(spacecraftConfig['X'])

    # Initial state parameters
    X = spacecraftConfig['X'].reshape(n, 1)
    P = spacecraftConfig['covar']

    print(spacecraftConfig)
    print(X)

    # Loop over times
    #    beta_list = []
    filter_output = {}
    filter_output['time'] = []
    filter_output['X'] = []
    filter_output['P'] = []
    filter_output['resids'] = []
    for ii in range(len(meas_times)):

        # Retrieve current and previous times
        ti = meas_times[ii]
        print('Current time: ', ti)

        ti_prior = spacecraftConfig['time']
        print(ti_prior)

        delta_t = (ti - ti_prior).total_seconds()
        print('delta_t', delta_t)

        # Predictor
        if spacecraftConfig['type'] == '3DoF':
            Xbar, Pbar = \
                ukf_3dof_predictor(X, P, delta_t, n, alpha,
                                   spacecraftConfig, forcesCoeff, surfaces)

        elif spacecraftConfig['type'] == '3att':
            Xbar, Pbar = \
                ukf_3att_predictor(X, P, delta_t, n, alpha,
                                   spacecraftConfig, forcesCoeff, surfaces)

        elif spacecraftConfig['type'] == '6DoF':
            Xbar, Pbar, qmean = \
                ukf_6dof_predictor(X, P, delta_t, n, alpha,
                                   spacecraftConfig, forcesCoeff, surfaces)

        else:
            print('Spacecraft Type Error')
            print(spacecraftConfig)
            break

        print('\n\n Predictor Step')
        print(ti)
        print(Xbar)
        print(Pbar)

        # Skyfield time and sun position
        UTC_skyfield = ts.utc(ti.replace(tzinfo=utc))
        sun_gcrf = earth.at(UTC_skyfield).observe(sun).position.km
        sun_gcrf = np.reshape(sun_gcrf, (3, 1))

        # EOPs at current time
        EOP_data = get_eop_data(eop_alldata, ti)

        # Loop over sensors
        #        Yi = meas[ii,:].reshape(len(meas[ii,:]),1)
        sensor_id_list = list(meas_dict[ti].keys())
        for sensor_id in sensor_id_list:
            sensor = sensor_dict[sensor_id]
            Yi = meas_dict[ti][sensor_id]

            print('Yi', Yi)

            # Corrector
            if spacecraftConfig['type'] == '3DoF':
                X, P, beta = ukf_3dof_corrector(Xbar, Pbar, Yi, ti, n, alpha,
                                                sun_gcrf, sensor, EOP_data,
                                                XYs_df, spacecraftConfig,
                                                surfaces)

            elif spacecraftConfig['type'] == '3att':
                X, P, beta = ukf_3att_corrector(Xbar, Pbar, Yi, ti, n, alpha,
                                                sun_gcrf, sensor, EOP_data,
                                                XYs_df, spacecraftConfig,
                                                surfaces)

            elif spacecraftConfig['type'] == '6DoF':
                X, P, beta = ukf_6dof_corrector(Xbar, Pbar, qmean, Yi, ti, n,
                                                alpha, sun_gcrf, sensor,
                                                EOP_data, XYs_df,
                                                spacecraftConfig, surfaces)

            else:
                print('Spacecraft Type Error')
                print(spacecraftConfig)
                break

            print('\n\n Corrector Step')
            print(ti)
            print(sensor_id)
            print(X)
            print(P)
            print(beta)

        # Update with post-fit solution
        spacecraftConfig['time'] = ti

        # Compute post-fit residuals
        Ybar_post = compute_measurement(X, sun_gcrf, sensor, spacecraftConfig,
                                        surfaces, ti, EOP_data,
                                        sensor['meas_types'], XYs_df)
        resids = Yi - Ybar_post

        print('post')
        print('Ybar_post', Ybar_post)
        print('resids', resids)

        #        if ii > 3:
        #            mistake

        # Append data to output
        filter_output['time'].append(ti)
        filter_output['X'].append(X)
        filter_output['P'].append(P)
        filter_output['resids'].append(resids)

    return filter_output
예제 #5
0
파일: visibility.py 프로젝트: gehly/metis
def check_visibility(state, UTC_times, sun_gcrf_array, moon_gcrf_array, sensor,
                     spacecraftConfig, surfaces, eop_alldata, XYs_df=[]):
    
    # Sensor parameters
    mapp_lim = sensor['mapp_lim']
    az_lim = sensor['az_lim']
    el_lim = sensor['el_lim']
    rg_lim = sensor['rg_lim']
    sun_elmask = sensor['sun_elmask']
    moon_angle_lim = sensor['moon_angle_lim']
    geodetic_latlonht = sensor['geodetic_latlonht']
    meas_types = ['rg', 'az', 'el']
    
    # Sensor coordinates
    lat = geodetic_latlonht[0]
    lon = geodetic_latlonht[1]
    ht = geodetic_latlonht[2]
    sensor_itrf = latlonht2ecef(lat, lon, ht)
    
    start = time.time()
    
    # Loop over times and check visiblity conditions
    vis_inds = []
    for ii in range(len(UTC_times)):
        
        
            
        
        # Retrieve time and current sun and object locations in ECI
        UTC = UTC_times[ii]
        Xi = state[ii,:]
        sun_gcrf = sun_gcrf_array[:,ii].reshape(3,1)
        
#        print(UTC)
        
        if ii % 100 == 0:
            print(ii)
            print(UTC)
            print('time elapsed:', time.time() - start)
        
        # Compute measurements
        EOP_data = get_eop_data(eop_alldata, UTC)
        Yi = compute_measurement(Xi, sun_gcrf, sensor, spacecraftConfig,
                                 surfaces, UTC, EOP_data, meas_types,
                                 XYs_df)
        
#        print(Yi)
    
        rg = float(Yi[0])
        az = float(Yi[1])
        el = float(Yi[2])
        
        # Compute sun elevation angle
        sun_itrf, dum = gcrf2itrf(sun_gcrf, np.zeros((3,1)), UTC, EOP_data,
                                  XYs_df)
        
        sun_az, sun_el, sun_rg = ecef2azelrange_rad(sun_itrf, sensor_itrf)
        
        # Check against constraints
        vis_flag = True
        if el < el_lim[0]:
            vis_flag = False
        if el > el_lim[1]:
            vis_flag = False
        if az < az_lim[0]:
            vis_flag = False
        if az > az_lim[1]:
            vis_flag = False
        if rg < rg_lim[0]:
            vis_flag = False
        if rg > rg_lim[1]:
            vis_flag = False
        
            
        if sun_el > sun_elmask:
            vis_flag = False
         
        # If passed constraints, check for eclipse and moon angle
        if vis_flag:
            
            # Compute angles
            rso_gcrf = Xi[0:3].reshape(3,1)
            moon_gcrf = moon_gcrf_array[:,ii].reshape(3,1)
            sensor_gcrf, dum = \
                itrf2gcrf(sensor_itrf, np.zeros((3,1)), UTC, EOP_data,
                          XYs_df)
            phase_angle, sun_angle, moon_angle = \
                compute_angles(rso_gcrf, sun_gcrf, moon_gcrf, sensor_gcrf)
        
            # Check for eclipse - if sun angle is less than half cone angle
            # the sun is behind the earth
            # First check valid orbit - radius greater than Earth radius
            r = np.linalg.norm(rso_gcrf)
            if r < Re:
                vis_flag = False
            else:
                half_cone = asin(Re/r)
                if sun_angle < half_cone:
                    vis_flag = False                
            
            # Check too close to moon
            if moon_angle < moon_angle_lim:
                vis_flag = False
                

        
        
            #TODO Moon Limits based on phase of moon (Meeus algorithm?)
        
        # If still good, compute apparent mag
        if vis_flag:
            
#            print('az', az*180/pi)
#            print('el', el*180/pi)
#            print('sun az', sun_az*180/pi)
#            print('sun el', sun_el*180/pi)
            
            
            meas_types_mapp = ['mapp']
            Yi = compute_measurement(Xi, sun_gcrf, sensor, spacecraftConfig,
                                     surfaces, UTC, EOP_data, meas_types_mapp,
                                     XYs_df)
            
            if float(Yi[0]) > mapp_lim:
                vis_flag = False
        
        # If passed all checks, append to list
        if vis_flag:
            vis_inds.append(ii)
    
    return vis_inds
예제 #6
0
def twobody_geo_setup():

    arcsec2rad = pi / (3600. * 180.)

    # Retrieve latest EOP data from celestrak.com
    eop_alldata = get_celestrak_eop_alldata()

    # Retrieve polar motion data from file
    XYs_df = get_XYs2006_alldata()

    # Define state parameters
    state_params = {}
    state_params['GM'] = GME
    state_params['radius_m'] = 1.
    state_params['albedo'] = 0.1

    # Integration function and additional settings
    int_params = {}
    int_params['integrator'] = 'ode'
    int_params['ode_integrator'] = 'dop853'
    int_params['intfcn'] = ode_twobody
    int_params['rtol'] = 1e-12
    int_params['atol'] = 1e-12
    int_params['time_system'] = 'datetime'

    # Time vector
    tk_list = []
    for hr in range(24):
        UTC = datetime(2021, 6, 21, hr, 0, 0)
        tvec = np.arange(0., 601., 60.)
        tk_list.extend([UTC + timedelta(seconds=ti) for ti in tvec])

    # Inital State
    elem = [42164.1, 0.001, 0., 90., 0., 0.]
    X_true = np.reshape(kep2cart(elem), (6, 1))
    P = np.diag([1., 1., 1., 1e-6, 1e-6, 1e-6])
    pert_vect = np.multiply(np.sqrt(np.diag(P)), np.random.randn(6))
    X_init = X_true + np.reshape(pert_vect, (6, 1))

    state_dict = {}
    state_dict[tk_list[0]] = {}
    state_dict[tk_list[0]]['X'] = X_init
    state_dict[tk_list[0]]['P'] = P

    # Sensor and measurement parameters
    sensor_id_list = ['UNSW Falcon']
    sensor_params = define_sensors(sensor_id_list)
    sensor_params['eop_alldata'] = eop_alldata
    sensor_params['XYs_df'] = XYs_df

    for sensor_id in sensor_id_list:
        sensor_params[sensor_id]['meas_types'] = ['ra', 'dec']
        sigma_dict = {}
        sigma_dict['ra'] = 5. * arcsec2rad  # rad
        sigma_dict['dec'] = 5. * arcsec2rad  # rad
        sensor_params[sensor_id]['sigma_dict'] = sigma_dict
    print(sensor_params)

    # Generate truth and measurements
    truth_dict = {}
    meas_fcn = H_radec
    meas_dict = {}
    meas_dict['tk_list'] = []
    meas_dict['Yk_list'] = []
    meas_dict['sensor_id_list'] = []
    X = X_true.copy()
    for kk in range(len(tk_list)):

        if kk > 0:
            tin = [tk_list[kk - 1], tk_list[kk]]
            tout, Xout = general_dynamics(X, tin, state_params, int_params)
            X = Xout[-1, :].reshape(6, 1)

        truth_dict[tk_list[kk]] = X

        # Check visibility conditions and compute measurements
        UTC = tk_list[kk]
        EOP_data = get_eop_data(eop_alldata, UTC)

        for sensor_id in sensor_id_list:
            sensor = sensor_params[sensor_id]
            if check_visibility(X, state_params, sensor, UTC, EOP_data,
                                XYs_df):

                # Compute measurements
                Yk = compute_measurement(X,
                                         state_params,
                                         sensor,
                                         UTC,
                                         EOP_data,
                                         XYs_df,
                                         meas_types=sensor['meas_types'])

                Yk[0] += np.random.randn() * sigma_dict['ra']
                Yk[1] += np.random.randn() * sigma_dict['dec']

                meas_dict['tk_list'].append(UTC)
                meas_dict['Yk_list'].append(Yk)
                meas_dict['sensor_id_list'].append(sensor_id)

    # Plot data
    tplot = [(tk - tk_list[0]).total_seconds() / 3600. for tk in tk_list]
    xplot = []
    yplot = []
    zplot = []
    for tk in tk_list:
        X = truth_dict[tk]
        xplot.append(X[0])
        yplot.append(X[1])
        zplot.append(X[2])

    meas_tk = meas_dict['tk_list']
    meas_tplot = [(tk - tk_list[0]).total_seconds() / 3600. for tk in meas_tk]
    meas_sensor_id = meas_dict['sensor_id_list']
    meas_sensor_index = [
        sensor_id_list.index(sensor_id) for sensor_id in meas_sensor_id
    ]

    plt.figure()
    plt.subplot(3, 1, 1)
    plt.plot(tplot, xplot, 'k.')
    plt.ylabel('X [km]')
    plt.subplot(3, 1, 2)
    plt.plot(tplot, yplot, 'k.')
    plt.ylabel('Y [km]')
    plt.subplot(3, 1, 3)
    plt.plot(tplot, zplot, 'k.')
    plt.ylabel('Z [km]')
    plt.xlabel('Time [hours]')

    plt.figure()
    plt.plot(meas_tplot, meas_sensor_index, 'k.')
    plt.xlabel('Time [hours]')
    plt.ylabel('Sensor ID')

    plt.show()

    print(meas_dict)

    pklFile = open('twobody_geo_setup.pkl', 'wb')
    pickle.dump([
        state_dict, state_params, int_params, meas_fcn, meas_dict,
        sensor_params, truth_dict
    ], pklFile, -1)
    pklFile.close()

    return