예제 #1
0
 def __init__(self, y_true, y_pred):
     self.f1 = f1_score(y_true, y_pred)
     self.acuracia = accuracy_score(y_true, y_pred)
     self.precisao = precision_score(y_true, y_pred)
     self.recall = recall_score(y_true, y_pred)
     self.relatorio_classificacao = classification_report(y_true, y_pred)
예제 #2
0
def evaluate(args, model, UniDataSet, task):

    _, dataset, _ = UniDataSet.load_single_dataset(
        task, batch_size=args.mini_batch_size, mode="dev")
    task_id = UniDataSet.task_map[task]
    label_list = UniDataSet.labels_list[task_id]

    if torch.cuda.device_count() > 0:
        eval_batch_size = torch.cuda.device_count() * args.mini_batch_size
    else:
        eval_batch_size = args.mini_batch_size
    eval_sampler = SequentialSampler(dataset)
    eval_dataloader = DataLoader(dataset,
                                 sampler=eval_sampler,
                                 batch_size=eval_batch_size)

    logger.info(" *** Runing {} evaluation ***".format(task))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", eval_batch_size)
    nb_eval_steps = 0
    preds = None
    out_label_ids = None
    model.eval()

    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        batch = tuple(t.to(args.device) for t in batch)

        with torch.no_grad():
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "token_type_ids": batch[2],
                "task_id": task_id
            }

            outputs = model(**inputs)

            if args.do_alpha:
                alpha = outputs[0]
                outputs = outputs[1:]
            if type(model.classifier_list[task_id]
                    ) == DeepBiAffineDecoderV2 or type(
                        model.classifier_list[task_id]
                    ) == HummingbirdLSTMBiAffineDecoder:  # do parsing
                logits_arc = outputs[0]
                logits_label = outputs[1]
            else:
                logits = outputs[0]

        nb_eval_steps += 1
        if preds is None:
            # print("preds", logits.shape)
            if type(model.classifier_list[task_id]
                    ) == DeepBiAffineDecoderV2 or type(
                        model.classifier_list[task_id]
                    ) == HummingbirdLSTMBiAffineDecoder:
                preds_arc = logits_arc.detach().cpu().numpy()
                preds_label = logits_label.detach().cpu().numpy()
                out_head_ids = batch[4].detach().cpu().numpy()
                out_label_ids = batch[3].detach().cpu().numpy()
            else:
                preds = logits.detach().cpu().numpy()
                out_label_ids = batch[3].detach().cpu().numpy()
        else:
            if type(model.classifier_list[task_id]
                    ) == DeepBiAffineDecoderV2 or type(
                        model.classifier_list[task_id]
                    ) == HummingbirdLSTMBiAffineDecoder:
                preds_arc = np.append(preds_arc,
                                      logits_arc.detach().cpu().numpy(),
                                      axis=0)
                preds_label = np.append(preds_label,
                                        logits_label.detach().cpu().numpy(),
                                        axis=0)

                out_head_ids = np.append(out_head_ids,
                                         batch[4].detach().cpu().numpy(),
                                         axis=0)
                out_label_ids = np.append(out_label_ids,
                                          batch[3].detach().cpu().numpy(),
                                          axis=0)
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(out_label_ids,
                                          batch[3].detach().cpu().numpy(),
                                          axis=0)

    if type(model.classifier_list[task_id]) == DeepBiAffineDecoderV2 or type(
            model.classifier_list[task_id]) == HummingbirdLSTMBiAffineDecoder:
        preds_arc = np.argmax(preds_arc, axis=2)
        preds_label = np.argmax(preds_label, axis=2)
    else:
        preds = np.argmax(preds, axis=2)

    label_map = {i: label for i, label in enumerate(label_list)}
    print(label_map)
    if type(model.classifier_list[task_id]) == DeepBiAffineDecoderV2 or type(
            model.classifier_list[task_id]) == HummingbirdLSTMBiAffineDecoder:
        pad_token_label_id = -100
        out_head_list = [[] for _ in range(out_head_ids.shape[0])]
        preds_arc_list = [[] for _ in range(out_head_ids.shape[0])]

        out_label_list = [[] for _ in range(out_label_ids.shape[0])]
        preds_label_list = [[] for _ in range(out_label_ids.shape[0])]

        for i in range(out_head_ids.shape[0]):
            for j in range(out_head_ids.shape[1]):
                if out_head_ids[i, j] != pad_token_label_id:
                    out_head_list[i].append(str(out_head_ids[i][j]))
                    preds_arc_list[i].append(str(preds_arc[i][j]))

        for i in range(out_label_ids.shape[0]):
            for j in range(out_label_ids.shape[1]):
                if out_label_ids[i, j] != pad_token_label_id:
                    out_label_list[i].append(label_map[out_label_ids[i][j]])
                    preds_label_list[i].append(label_map[preds_label[i][j]])

    else:
        out_label_list = [[] for _ in range(out_label_ids.shape[0])]
        preds_list = [[] for _ in range(out_label_ids.shape[0])]

        for i in range(out_label_ids.shape[0]):
            for j in range(out_label_ids.shape[1]):
                if out_label_ids[i, j] != -100:
                    out_label_list[i].append(label_map[out_label_ids[i][j]])
                    preds_list[i].append(label_map[preds[i][j]])

        if task == "ONTO_NER" or task == "NER":
            for i in range(len(preds_list)):
                for j in range(len(preds_list[i])):
                    preds_list[i][j] = preds_list[i][j].split("-")[-1]

            for i in range(len(out_label_list)):
                for j in range(len(out_label_list[i])):
                    out_label_list[i][j] = out_label_list[i][j].split("-")[-1]

    results = {}
    if type(model.classifier_list[task_id]) == DeepBiAffineDecoderV2 or type(
            model.classifier_list[task_id]) == HummingbirdLSTMBiAffineDecoder:
        results["uas"] = accuracy_score(out_head_list, preds_arc_list)
        results["las"] = las_score(out_label_list, out_head_list,
                                   preds_label_list, preds_arc_list)
    else:
        results["a"] = accuracy_score(out_label_list, preds_list)
        results["p"] = precision_score(out_label_list, preds_list)
        results["r"] = recall_score(out_label_list, preds_list)
        results["f"] = f1_score(out_label_list, preds_list)
        logger.info("*** {} Evaluate results ***".format(task))
    for key in sorted(results.keys()):
        logger.info("  %s = %s ", key, str(results[key]))

    # print(results)
    if type(model.classifier_list[task_id]) == DeepBiAffineDecoderV2 or type(
            model.classifier_list[task_id]) == HummingbirdLSTMBiAffineDecoder:
        print("sample results")
        print("preds head", preds_arc_list[0])
        print("true head", out_head_list[0])

        print("preds label", preds_label_list[0])
        print("true label", out_label_list[0])

    else:
        print("predict_sample")
        print("predict_list", preds_list[0])
        print("out_label_list", out_label_list[0])

    return results
예제 #3
0
def evaluate(args, model, tokenizer, label_list, pad_token_label_id):
    eval_output_dir = args.output_dir
    if not os.path.exists(eval_output_dir):
        os.makedirs(eval_output_dir)
    eval_dataset = load_and_cache_examples(args, args.task_name, tokenizer, label_list, pad_token_label_id, data_type='dev')
    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)

    eval_sampler = SequentialSampler(eval_dataset)
    eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
    ##
    span_labels = []
    for label in label_list:
        label = label.split('-')[-1]
        if label not in span_labels:
            span_labels.append(label)
    span_map = {i: label for i, label in enumerate(span_labels)}

    # Eval
    logger.info("***** Running evaluation %s *****")
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    true_labels = []
    predict_labels = []
    model.eval()
    pbar = ProgressBar(n_total=len(eval_dataloader), desc="Evaluating")
    for step, batch in enumerate(eval_dataloader):
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {"input_ids": batch[0], "attention_mask": batch[1],
                      "start_positions": batch[5], "end_positions": batch[6]}
            if args.model_type != "distilbert":   # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
            tmp_eval_loss, start_logits, end_logits = outputs[:3]
        if args.n_gpu > 1:
            tmp_eval_loss = tmp_eval_loss.mean()  # mean() to average on multi-gpu parallel evaluating
        eval_loss += tmp_eval_loss.item()
        nb_eval_steps += 1
        
        start_preds = start_logits.detach().cpu().numpy() # [64, 128, 5]
        end_preds = end_logits.detach().cpu().numpy()

        start_preds = np.argmax(start_preds, axis=2)  # [64, 128]
        end_preds = np.argmax(end_preds, axis=2)

        start_preds_list = []
        end_preds_list = []

        batch_true_labels = batch[4].squeeze(0).cpu().numpy().tolist()
        for index, input_length in enumerate(batch[3]):  # batch[3] 每句长度
            start_preds_list.append([span_map[j] for j in start_preds[index][:input_length]][1:-1])
            end_preds_list.append([span_map[j] for j in end_preds[index][:input_length]][1:-1])
            batch_true = [args.id2label.get(i) for i in batch_true_labels[index][:input_length]][1:-1]
            true_labels.append(batch_true)
        
        batch_predict_labels = convert_span_to_bio(start_preds_list, end_preds_list)
        predict_labels.extend(batch_predict_labels)

        pbar(step)

    logger.info("\n")
    logger.info("average eval_loss: %s", str(eval_loss/nb_eval_steps))
    logger.info("accuary: %s", str(accuracy_score(true_labels, predict_labels)))
    logger.info("p: %s", str(precision_score(true_labels, predict_labels)))
    logger.info("r: %s", str(recall_score(true_labels, predict_labels)))
    logger.info("f1: %s", str(f1_score(true_labels, predict_labels)))
    logger.info("classification report: ")
    logger.info(str(classification_report(true_labels, predict_labels, mode='strict', scheme=IOB2)))
예제 #4
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=128,  #64, 256
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval or not.")
    parser.add_argument("--eval_on",
                        default="dev",
                        help="Whether to run eval on the dev set or test set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--weight_decay",
                        default=0.01,
                        type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=1.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O1',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {"ner": NerProcessor}

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    label_list = processor.get_labels()
    num_labels = len(label_list) + 1

    tokenizer = AlbertTokenizer.from_pretrained(
        args.bert_model, do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = 0
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    # Prepare model
    config = AlbertConfig.from_pretrained(args.bert_model,
                                          num_labels=num_labels,
                                          finetuning_task=args.task_name)
    model = Ner.from_pretrained(args.bert_model, from_tf=False, config=config)

    if args.local_rank == 0:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    model.to(device)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        args.weight_decay
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    warmup_steps = int(args.warmup_proportion * num_train_optimization_steps)
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=warmup_steps,
        num_training_steps=num_train_optimization_steps)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if n_gpu > 1:
        model = torch.nn.DataParallel(model)

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    label_map = {i: label for i, label in enumerate(label_list, 1)}
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)
        all_valid_ids = torch.tensor([f.valid_ids for f in train_features],
                                     dtype=torch.long)
        all_lmask_ids = torch.tensor([f.label_mask for f in train_features],
                                     dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids,
                                   all_valid_ids, all_lmask_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids, valid_ids, l_mask = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids,
                             valid_ids, l_mask)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(optimizer), args.max_grad_norm)
                else:
                    loss.backward()
                    torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                   args.max_grad_norm)

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    optimizer.step()
                    scheduler.step()  # Update learning rate schedule
                    model.zero_grad()
                    global_step += 1

        # Save a trained model and the associated configuration
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
        label_map = {i: label for i, label in enumerate(label_list, 1)}
        model_config = {
            "bert_model": args.bert_model,
            "do_lower": args.do_lower_case,
            "max_seq_length": args.max_seq_length,
            "num_labels": len(label_list) + 1,
            "label_map": label_map
        }
        json.dump(
            model_config,
            open(os.path.join(args.output_dir, "model_config.json"), "w"))
        # Load a trained model and config that you have fine-tuned
    else:
        # Load a trained model and vocabulary that you have fine-tuned
        model = Ner.from_pretrained(args.output_dir)
        tokenizer = AlbertTokenizer.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)

    model.to(device)

    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        if args.eval_on == "dev":
            eval_examples = processor.get_dev_examples(args.data_dir)
        elif args.eval_on == "test":
            eval_examples = processor.get_test_examples(args.data_dir)
        else:
            raise ValueError("eval on dev or test set only")
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        all_valid_ids = torch.tensor([f.valid_ids for f in eval_features],
                                     dtype=torch.long)
        all_lmask_ids = torch.tensor([f.label_mask for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids,
                                  all_valid_ids, all_lmask_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)
        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        y_true = []
        y_pred = []
        label_map = {i: label for i, label in enumerate(label_list, 1)}
        for input_ids, input_mask, segment_ids, label_ids, valid_ids, l_mask in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            valid_ids = valid_ids.to(device)
            label_ids = label_ids.to(device)
            l_mask = l_mask.to(device)

            with torch.no_grad():
                logits = model(input_ids,
                               segment_ids,
                               input_mask,
                               valid_ids=valid_ids,
                               attention_mask_label=l_mask)

            logits = torch.argmax(F.log_softmax(logits, dim=2), dim=2)
            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            input_mask = input_mask.to('cpu').numpy()

            for i, label in enumerate(label_ids):
                temp_1 = []
                temp_2 = []
                for j, m in enumerate(label):
                    if j == 0:
                        continue
                    elif label_ids[i][j] == len(label_map):
                        y_true.append(temp_1)
                        y_pred.append(temp_2)
                        break
                    else:
                        temp_1.append(label_map[label_ids[i][j]])
                        temp_2.append(label_map[logits[i][j]])

        report = classification_report(y_true, y_pred, digits=4)
        accuracy = accuracy_score(y_true, y_pred)
        logger.info("\n%s", report)
        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            logger.info("\n%s", report)
            writer.write(report)
        with open(output_eval_file, "a") as writer:
            logger.info("***** Eval results *****")
            logger.info("\n%s", accuracy)
            writer.write(str(accuracy))
예제 #5
0
    def test(
        self,
        data: DataLoader,
        all_ids: list,
        tag2code: dict,
        code2tag: dict,
    ) -> (dict, pd.DataFrame):
        eval_loss = 0.
        eval_steps, eval_examples = 0, 0
        eval_ids, eval_tokens, eval_predictions, eval_labels = [], [], [], []
        self.model.eval()
        for batch in data:
            batch_ids, batch_tokens, batch_masks, batch_tags = tuple(
                t.to(self.device) for t in batch)
            with torch.no_grad():
                outputs = self.model(batch_tokens,
                                     attention_mask=batch_masks,
                                     labels=batch_tags)
            logits = outputs[1].detach().cpu().numpy()
            label_ids = batch_tags.to('cpu').numpy()
            toks = batch_tokens.to('cpu').numpy()
            sentence_ids = batch_ids.to('cpu').numpy()

            eval_loss += outputs[0].mean().item()
            toks = [
                self.tokenizer.convert_ids_to_tokens(sentence)
                for sentence in toks
            ]
            eval_tokens.extend(toks)
            eval_predictions.extend(
                [list(p) for p in np.argmax(logits, axis=2)])
            eval_labels.extend(label_ids)
            eval_ids.extend(sentence_ids)

            eval_examples += batch_tokens.size(0)
            eval_steps += 1
        eval_loss = eval_loss / eval_steps
        flatten = lambda x: [j for i in x for j in i]

        predicted_tags, valid_tags, tokens, sentence_ids = self.translate(
            eval_predictions, eval_labels, eval_tokens, eval_ids, tag2code,
            code2tag, all_ids)

        # for st, sp, sv, vi in zip(tokens, predicted_tags, valid_tags, sentence_ids):
        #     for t, p, v, i in zip(st, sp, sv, vi):
        #         logger.info(f"row = {t}, {p}, {v}, {i}")

        predicted_data = pd.DataFrame(
            data={
                'sentence_id': flatten(sentence_ids),
                'tokens': flatten(tokens),
                'predicted_tag': flatten(predicted_tags),
                'valid_tag': flatten(valid_tags),
            })

        if len([
                tag for sent in valid_tags for tag in sent
                if tag[:2] in ['B-', 'I-']
        ]) == 0:
            valid_tags.append(["O"])
            predicted_tags.append(["B-ORG"])

        scores = {
            "loss": eval_loss,
            "acc": accuracy_score(valid_tags, predicted_tags),
            "f1": f1_score(valid_tags, predicted_tags),
            "p": precision_score(valid_tags, predicted_tags),
            "r": recall_score(valid_tags, predicted_tags),
            "report": classification_report(valid_tags, predicted_tags),
        }

        return scores, predicted_data
예제 #6
0
def evaluate(args, model, tokenizer, label_list, pad_token_label_id):
    eval_output_dir = args.output_dir
    if not os.path.exists(eval_output_dir):
        os.makedirs(eval_output_dir)
    eval_dataset = load_and_cache_examples(args,
                                           args.task_name,
                                           tokenizer,
                                           label_list,
                                           pad_token_label_id,
                                           data_type='dev')
    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)

    eval_sampler = SequentialSampler(eval_dataset)
    eval_dataloader = DataLoader(eval_dataset,
                                 sampler=eval_sampler,
                                 batch_size=args.eval_batch_size,
                                 collate_fn=collate_fn)
    # Eval
    logger.info("***** Running evaluation %s *****")
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    true_labels = []
    predict_labels = []
    model.eval()
    pbar = ProgressBar(n_total=len(eval_dataloader), desc="Evaluating")
    for step, batch in enumerate(eval_dataloader):
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "labels": batch[3],
                'input_lens': batch[4]
            }
            if args.model_type != "distilbert":  # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type
                                            in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
            tmp_eval_loss, logits = outputs[:2]
            batch_predict_labels = model.crf.decode(logits,
                                                    inputs['attention_mask'])
        if args.n_gpu > 1:
            tmp_eval_loss = tmp_eval_loss.mean(
            )  # mean() to average on multi-gpu parallel evaluating
        eval_loss += tmp_eval_loss.item()
        nb_eval_steps += 1

        batch_true_labels = batch[3].squeeze(0).cpu().numpy().tolist()
        pbar(step)
        for index, input_length in enumerate(batch[4]):
            batch_true = [
                args.id2label.get(i)
                for i in batch_true_labels[index][:input_length]
            ][1:-1]
            batch_predict = [
                args.id2label.get(i)
                for i in batch_predict_labels[index][:input_length]
            ][1:-1]
            true_labels.append(batch_true)
            predict_labels.append(batch_predict)

    logger.info("\n")
    logger.info("average eval_loss: %s", str(eval_loss / nb_eval_steps))
    logger.info("accuary: %s", str(accuracy_score(true_labels,
                                                  predict_labels)))
    logger.info("p: %s", str(precision_score(true_labels, predict_labels)))
    logger.info("r: %s", str(recall_score(true_labels, predict_labels)))
    logger.info("f1: %s", str(f1_score(true_labels, predict_labels)))
    logger.info("classification report: ")
    logger.info(
        str(
            classification_report(true_labels,
                                  predict_labels,
                                  mode='strict',
                                  scheme=IOB2)))
예제 #7
0
        true_labels.extend(val_batch_labels)

        tmp_eval_accuracy = flat_accuracy(val_batch_labels, val_batch_preds)

        eval_loss += tmp_eval_loss.mean().item()
        eval_accuracy += tmp_eval_accuracy

        nb_eval_examples += b_input_ids.size(0)
        nb_eval_steps += 1

    # Evaluate loss, acc, conf. matrix, and class. report on devset
    pred_tags = [[tag2name[i] for i in predictions]]
    valid_tags = [[tag2name[i] for i in true_labels]]
    cl_report = classification_report(valid_tags, pred_tags)
    eval_loss = eval_loss / nb_eval_steps
    tmp_accuracy = accuracy_score(valid_tags, pred_tags)
    if tmp_accuracy > dev_best_acc:
        dev_best_acc = tmp_accuracy
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self

        output_model_file = os.path.join(bert_out_address, "pytorch_model.bin")
        output_config_file = os.path.join(bert_out_address, "config.json")

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)

    # Report metrics
    f1 = f1_score(valid_tags, pred_tags)
    if f1 > dev_best_f1:
        dev_best_f1 = f1
def evaluate(y_true, y_pred):
    print("accuracy: {:.2}".format(accuracy_score(y_true, y_pred)))
    print("precision: {:.2}".format(precision_score(y_true, y_pred)))
    print("recall: {:.2}".format(recall_score(y_true, y_pred)))
    print("f1: {:.2}".format(f1_score(y_true, y_pred)))
    print(classification_report(y_true, y_pred))
예제 #9
0
 def calculate_metrics(pred_tags, gt_tags):
     f1 = f1_score(pred_tags, gt_tags)*100
     ppv = precision_score(pred_tags, gt_tags)*100
     sen = recall_score(pred_tags, gt_tags)*100
     acc = accuracy_score(pred_tags, gt_tags)*100
     return {'f1':f1, 'precision':ppv, 'recall':sen, 'accuracy':acc}
예제 #10
0
        # Accumulate the validation loss.
        total_eval_loss += loss.item()

        # Move logits and labels to CPU
        logits = logits.detach().cpu().numpy()
        label_ids = b_labels.to('cpu').numpy()

        val_pred.append(np.argmax(logits, axis=2).flatten().tolist())
        val_lab.append(label_ids.flatten().tolist())

    # Report the final accuracy for this validation run.
    val_pred_tag = get_label_name(val_pred)
    val_lab_tag = get_label_name(val_lab)

    avg_val_accuracy = accuracy_score(y_pred=val_pred_tag, y_true=val_lab_tag)
    print("  Accuracy: {0:.2f}".format(avg_val_accuracy))

    val_class_report = classification_report(y_pred=val_pred_tag, y_true=val_lab_tag)
    print("====class_report:", val_class_report)

    # Calculate the average loss over all of the batches.
    avg_val_loss = total_eval_loss / len(val_data_loader)

    # Measure how long the validation run took.
    validation_time = format_time(time.time() - t0)

    print("  Validation Loss: {0:.2f}".format(avg_val_loss))
    print("  Validation took: {:}".format(validation_time))

    # Record all statistics from this epoch.
    def iterate_batches(self, epoch, n_epoch, iterator, train, mode):
        '''
        
        iterates through batchs in an epoch

        epoch: current epoch
        n_epoch: total epochs
        iterator: the iterator to be used for fetching batches
        train: switch for whether or not to train this epoch
        mode: string that just labels the epoch in the output

        '''
        # initialize lists for batch losses and metrics 
        batch_loss = []
        batch_accuracy = []
        batch_f1 = []
        # initialize batch range
        batch_range = tqdm(iterator, desc='')
        for batch in batch_range:
            # fetch texts, characters, and tags from batch
            text = batch.text.to(self.device)
            char = batch.char.to(self.device)
            tag = batch.tag.to(self.device)

            # zero out prior gradients for training
            if train:
                self.optimizer.zero_grad()

            # output depends on whether conditional random field is used for prediction/loss
            if self.model.use_crf:
                prediction, loss = self.model(text, char, tag)
            else:
                logit = self.model(text, char, tag)
                loss = self.criterion(logit.view(-1, logit.shape[-1]), tag.view(-1))
                logit = logit.detach().cpu().numpy()
                prediction = [list(p) for p in np.argmax(logit, axis=2)]

            # send the true tags to python list on the cpu
            true = list(tag.to('cpu').numpy())

            # put the prediction tags and valid tags into a nested list form for the scoring metrics
            prediction_tags = [[self.data.tag_field.vocab.itos[ii] for ii, jj in zip(i, j) if self.data.tag_field.vocab.itos[jj] != self.data.pad_token] for i, j in zip(prediction, true)]
            valid_tags = [[self.data.tag_field.vocab.itos[ii] for ii in i if self.data.tag_field.vocab.itos[ii] != self.data.pad_token] for i in true]

            # calculate the accuracy and f1 scores
            accuracy = accuracy_score(valid_tags, prediction_tags)
            f1 = f1_score(valid_tags, prediction_tags)

            # append to the lists
            batch_loss.append(loss.item())
            batch_accuracy.append(accuracy)
            batch_f1.append(f1)

            # backpropagate the gradients and step the optimizer forward
            if train:
                loss.backward()
                self.optimizer.step()

            # calculate means across the batches so far
            means = (np.mean(batch_loss), np.mean(batch_accuracy), np.mean(batch_f1))
            # display progress
            batch_range.set_description('| epoch: {:d}/{} | {} | loss: {:.4f} | accuracy: {:.4f} | f1: {:.4f} |'.format(epoch+1, n_epoch, mode, *means))
        # return the batch losses and metrics
        return batch_loss, batch_accuracy, batch_f1
    def testing(self, test_episodes, label_map):
        self.bert.load_state_dict(
            torch.load(
                'MetaLearningForNER/saved_models/SupervisedLearner-stable.h5'))

        map_to_label = {v: k for k, v in label_map.items()}

        #         episode_accuracies, episode_precisions, episode_recalls, episode_f1s = [], [], [], []
        all_true_labels = []
        all_predictions = []
        for episode_id, episode in enumerate(tqdm(test_episodes)):
            batch_x, batch_len, batch_y = next(iter(episode.support_loader))
            support_repr, _, support_labels = self.vectorize(
                batch_x, batch_len, batch_y)
            support_repr = support_repr.reshape(
                support_repr.shape[0] * support_repr.shape[1], -1)
            support_labels = support_labels.view(-1)
            support_repr = support_repr[support_labels != -1].cpu().numpy()
            support_labels = support_labels[support_labels != -1].cpu().numpy()

            batch_x, batch_len, batch_y = next(iter(episode.query_loader))
            query_repr, _, true_labels = self.vectorize(
                batch_x, batch_len, batch_y)
            query_bs, query_seqlen = query_repr.shape[0], query_repr.shape[1]
            query_repr = query_repr.reshape(
                query_repr.shape[0] * query_repr.shape[1], -1)
            true_labels = true_labels.view(-1)
            # query_repr = query_repr[true_labels != -1].cpu().numpy()
            query_repr = query_repr.cpu().numpy()
            # true_labels = true_labels[true_labels != -1].cpu().numpy()
            true_labels = true_labels.cpu().numpy()

            dist = cdist(query_repr, support_repr, metric='cosine')
            nearest_neighbor = np.argmin(dist, axis=1)
            predictions = support_labels[nearest_neighbor]

            true_labels = true_labels.reshape(query_bs, query_seqlen)
            predictions = predictions.reshape(query_bs, query_seqlen)

            seq_true_labels, seq_predictions = [], []
            for i in range(len(true_labels)):
                true_i = true_labels[i]
                pred_i = predictions[i]
                seq_predictions.append(
                    [map_to_label[val] for val in pred_i[true_i != -1]])
                seq_true_labels.append(
                    [map_to_label[val] for val in true_i[true_i != -1]])

            all_predictions.extend(seq_predictions)
            all_true_labels.extend(seq_true_labels)

            accuracy = accuracy_score(seq_true_labels, seq_predictions)
            precision = precision_score(seq_true_labels, seq_predictions)
            recall = recall_score(seq_true_labels, seq_predictions)
            f1 = f1_score(seq_true_labels, seq_predictions)
            # logger.info('Episode {}/{}, task {} [query set]: Accuracy = {:.5f}, precision = {:.5f}, '
            #             'recall = {:.5f}, F1 score = {:.5f}'.format(episode_id + 1, len(test_episodes), episode.task_id,
            #                                                         accuracy, precision, recall, f1))

#             episode_accuracies.append(accuracy)
#             episode_precisions.append(precision)
#             episode_recalls.append(recall)
#             episode_f1s.append(f1_score)

        accuracy = accuracy_score(all_true_labels, all_predictions)
        precision = precision_score(all_true_labels, all_predictions)
        recall = recall_score(all_true_labels, all_predictions)
        f1 = f1_score(all_true_labels, all_predictions)
        logger.info(
            'Avg meta-testing metrics: Accuracy = {:.5f}, precision = {:.5f}, recall = {:.5f}, '
            'F1 score = {:.5f}'.format(accuracy, precision, recall, f1))
        return f1
예제 #13
0
 def compute_metrics(p: EvalPrediction) -> Dict:
     preds_list, out_label_list = align_predictions(p.predictions,
                                                    p.label_ids)
     return {"acc": accuracy_score(out_label_list, preds_list)}
def get_predictions(model, dataloader, device):

    eval_loss, eval_accuracy = 0, 0
    nb_eval_steps, nb_eval_examples = 0, 0
    y_true = []
    y_pred = []

    model.eval()
    predictions, hit, miss, err, total = [], 0, 0, 0, 0
    with torch.no_grad():
        for _, *data in dataloader:
            if next(model.parameters()).is_cuda:
                data = [t.to(device) for t in data if t is not None]

            tokens_tensors, segments_tensors, masks_tensors, labels = data

            outputs = model(
                input_ids=tokens_tensors,
                token_type_ids=None,
                # token_type_ids=segments_tensors,
                attention_mask=masks_tensors)

            logits = outputs[0]

            logits = torch.argmax(F.log_softmax(logits, dim=2), dim=2)
            logits = logits.detach().cpu().numpy()

            # Get NER true result
            labels = labels.to('cpu').numpy()

            # Only predict the real word, mark=0, will not calculate
            masks_tensors = masks_tensors.to('cpu').numpy()

            # Compare the valuable predict result
            for i, mask in enumerate(masks_tensors):
                # Real one
                temp_1 = []
                # Predict one
                temp_2 = []

                for j, m in enumerate(mask):
                    # Mark=0, meaning its a pad word, dont compare
                    if m:
                        if tag2name[labels[i][j]] != "X" \
                            and tag2name[labels[i][j]] != "[CLS]" \
                            and tag2name[labels[i][j]] != "[SEP]" : # Exclude the X label
                            temp_1.append(tag2name[labels[i][j]])
                            temp_2.append(tag2name[logits[i][j]])
                    else:
                        break

                y_true.append(temp_1)
                y_pred.append(temp_2)

                mtag = lambda labs: [tag2idx['I-per'] \
                        if l == tag2idx['B-per'] else l for l in labs]

                aseq = set([tuple(i for i,value in it) \
                        for key,it in itertools.groupby(
                            enumerate(mtag(labels[i])), key=operator.itemgetter(1)) \
                        if key == tag2idx['I-per']])
                pseq = set([tuple(i for i,value in it) \
                        for key,it in itertools.groupby(
                            enumerate(mtag(logits[i])), key=operator.itemgetter(1)) \
                        if key == tag2idx['I-per']])

                total += len(aseq)
                hit += len(pseq & aseq)
                miss += len(aseq - pseq)
                err += len(pseq - aseq)

            ##predictions.append(pseq)

    print("f1 socre: %f" % (f1_score(y_true, y_pred)))
    print("Accuracy score: %f" % (accuracy_score(y_true, y_pred)))
    print("Name score hit: {} / {} = {}".format(hit, total, hit / total))
    print("Name score miss: {} / {} = {}".format(miss, total, miss / total))
    print("Name score error: {} / {} = {}".format(err, total, err / total))
    return None, accuracy_score(y_true, y_pred)
        # Not storing gradient for memory
        with torch.no_grad():
            outputs = model(b_input_ids,
                            token_type_ids=None,
                            attention_mask=b_input_mask,
                            labels=b_labels)

        logits = outputs[1].detach().cpu().numpy()
        label_ids = b_labels.to('cpu').numpy()

        eval_loss += outputs[0].mean().item()
        predictions.extend([list(p) for p in np.argmax(logits, axis=2)])
        true_labels.extend(label_ids)

    eval_loss = eval_loss / len(valid_dataloader)
    validation_loss_values.append(eval_loss)

    pred_tags = [
        tag_values[p_i] for p, l in zip(predictions, true_labels)
        for p_i, l_i in zip(p, l) if tag_values[l_i] != "PAD"
    ]
    valid_tags = [
        tag_values[l_i] for l in true_labels for l_i in l
        if tag_values[l_i] != "PAD"
    ]
print("Validation Accuracy: {}".format(accuracy_score(pred_tags, valid_tags)))
print("Validation F1-Score: {}".format(f1_score(pred_tags, valid_tags)))

torch.save(model.state_dict(), "Criteria.pth")
예제 #16
0
def evaluate(args, model, UniDataSet, task):

    _, dataset, _ = UniDataSet.load_single_dataset(
        task, batch_size=args.mini_batch_size, mode="dev")
    task_id = UniDataSet.task_map[task]
    label_list = UniDataSet.labels_list[task_id]

    if torch.cuda.device_count() > 0:
        eval_batch_size = torch.cuda.device_count() * args.mini_batch_size
    else:
        eval_batch_size = args.mini_batch_size
    eval_sampler = SequentialSampler(dataset)
    eval_dataloader = DataLoader(dataset,
                                 sampler=eval_sampler,
                                 batch_size=eval_batch_size)

    logger.info(" *** Runing {} evaluation ***".format(task))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", eval_batch_size)
    nb_eval_steps = 0
    preds = None
    out_label_ids = None
    model.eval()

    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        batch = tuple(t.to(args.device) for t in batch)

        with torch.no_grad():
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "token_type_ids": batch[2],
                "task_id": task_id
            }

            outputs = model(**inputs)

            if args.do_alpha:
                alpha = outputs[0]
                outputs = outputs[1:]

            logits = outputs[0]

        nb_eval_steps += 1
        if preds is None:
            # print("preds", logits.shape)
            preds = logits.detach().cpu().numpy()
            out_label_ids = batch[3].detach().cpu().numpy()
        else:
            preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
            out_label_ids = np.append(out_label_ids,
                                      batch[3].detach().cpu().numpy(),
                                      axis=0)

    preds = np.argmax(preds, axis=2)
    if len(label_list) == 0:
        pass
    else:
        label_map = {i: label for i, label in enumerate(label_list)}

    out_label_list = [[] for _ in range(out_label_ids.shape[0])]
    preds_list = [[] for _ in range(out_label_ids.shape[0])]

    for i in range(out_label_ids.shape[0]):
        for j in range(out_label_ids.shape[1]):
            if out_label_ids[i, j] != -100:
                if len(label_list) == 0:
                    out_label_list[i].append(str(out_label_ids[i][j]))
                    preds_list[i].append(str(preds[i][j]))
                else:
                    out_label_list[i].append(label_map[out_label_ids[i][j]])
                    preds_list[i].append(label_map[preds[i][j]])

    if task == "ONTO_NER" or task == "NER":
        for i in range(len(preds_list)):
            for j in range(len(preds_list[i])):
                preds_list[i][j] = preds_list[i][j].split("-")[-1]

        for i in range(len(out_label_list)):
            for j in range(len(out_label_list[i])):
                out_label_list[i][j] = out_label_list[i][j].split("-")[-1]

    results = {}
    results["a"] = accuracy_score(out_label_list, preds_list)
    results["p"] = precision_score(out_label_list, preds_list)
    results["r"] = recall_score(out_label_list, preds_list)
    results["f"] = f1_score(out_label_list, preds_list)
    logger.info("*** {} Evaluate results ***".format(task))
    for key in sorted(results.keys()):
        logger.info("  %s = %s ", key, str(results[key]))

    # print(results)
    print("predict_sample")
    print("predict_list", preds_list[0])
    print("out_label_list", out_label_list[0])

    # write the results to text
    with open("results-v2.txt", "w+", encoding="utf-8") as f:
        for line in preds_list:
            line = " ".join(line) + "\n"
            f.write(line)

    return results
예제 #17
0
from seqeval.metrics import accuracy_score
from seqeval.metrics import classification_report
from seqeval.metrics import f1_score
from seqeval.metrics import precision_score
from sklearn import metrics

y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
labels = [3, 3, 3, 1, 2, 2, 3, 1, 2, 3]
predictions = [3, 3, 1, 2, 2, 2, 3, 1, 2, 3]
p, r, f, sup = metrics.precision_recall_fscore_support(labels, predictions, average='macro')
print(precision_score(y_true, y_pred))
print(f1_score(y_true, y_pred))
print(accuracy_score(y_true, y_pred))
print(classification_report(y_true, y_pred))
    epochs = 8

    model = create_model(number_of_words_total, number_of_tags, len_max,
                         embedding_size, lstm_units, dropout,
                         recurrent_dropout)

    history, pred_labels, real_labels = run_model(model, X_train, y_train,
                                                  X_test, y_test,
                                                  indices_to_tag, epochs)

    with open("../BiLTSM_CRF.log", "a") as file:
        file.write(
            "\n##############################################################\n\n"
        )
        file.write(f"Dataset: {dataset}\n")
        file.write(
            f"Embedding size: {embedding_size} | Dropout: {dropout} | Recurrent dropout: {recurrent_dropout}\
    | Epochs: {epochs} | LSTM units: {lstm_units} | Train: train, eng_a | Test: eng_b\n"
        )
        file.write("Accuracy: {:.2%}\n".format(
            accuracy_score(real_labels, pred_labels)))
        file.write("F1-score: {:.2%}\n\n".format(
            f1_score(real_labels, pred_labels)))

        file.write(classification_report(real_labels, pred_labels))

        report = flat_classification_report(y_pred=pred_labels,
                                            y_true=real_labels,
                                            labels=tags_without_O)
        file.write(report)
예제 #19
0
def predict(args, model, tokenizer, label_list, pad_token_label_id, prefix=""):
    pred_output_dir = args.output_dir
    if not os.path.exists(pred_output_dir):
        os.makedirs(pred_output_dir)
    test_dataset = load_and_cache_examples(args,
                                           args.task_name,
                                           tokenizer,
                                           label_list,
                                           pad_token_label_id,
                                           data_type='test')
    # Note that DistributedSampler samples randomly
    test_sampler = SequentialSampler(test_dataset)
    test_dataloader = DataLoader(test_dataset,
                                 sampler=test_sampler,
                                 batch_size=1,
                                 collate_fn=collate_fn)  # 每次只有一条数据
    # Eval
    logger.info("***** Running prediction %s *****", prefix)
    logger.info("  Num examples = %d", len(test_dataset))
    logger.info("  Batch size = %d", 1)
    results = []  # 全部测试结果
    error_results = []  # 预测错误结果
    true_labels = []  # 真实标签
    predict_labels = []  # 预测标签
    output_predict_file = os.path.join(pred_output_dir, prefix,
                                       "test_prediction.txt")
    error_predict_file = os.path.join(pred_output_dir, prefix,
                                      "Error_test_prediction.txt")
    pbar = ProgressBar(n_total=len(test_dataloader), desc="Predicting")

    if isinstance(model, torch.nn.DataParallel):  # 多GPU训练
        model = model.module
    for step, batch in enumerate(test_dataloader):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "labels": None,
                'input_lens': batch[4]
            }
            if args.model_type != "distilbert":  # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type
                                            in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
            logits = outputs[0]
            batch_predict_labels = model.crf.decode(logits,
                                                    inputs['attention_mask'])

        batch_predict_labels = batch_predict_labels[0][
            1:-1]  # [CLS]XXXX[SEP] 每次只有一条数据
        batch_true_labels = batch[3].squeeze(0).cpu().numpy().tolist()[1:-1]
        input_ids = inputs["input_ids"].squeeze(0).cpu().numpy().tolist()[1:-1]

        sent = ""

        ifError = False
        for input_id, pre, lab in zip(input_ids, batch_predict_labels,
                                      batch_true_labels):
            sent += " ".join([
                tokenizer.ids_to_tokens[input_id], args.id2label[lab],
                args.id2label[pre]
            ]) + "\n"
            if args.id2label[lab] != args.id2label[pre]:
                ifError = True
        sent += "\n"
        results.append(sent)
        if ifError:
            error_results.append(sent)
            ifError = False
        pbar(step)
        # 计算测试集 acc, recall, f1
        batch_true = [args.id2label.get(i) for i in batch_true_labels]
        batch_predict = [args.id2label.get(i) for i in batch_predict_labels]
        assert len(batch_true) == len(batch_predict)
        true_labels.append(batch_true)
        predict_labels.append(batch_predict)

    logger.info("\n测试集结果统计:")
    logger.info("accuary: %s", str(accuracy_score(true_labels,
                                                  predict_labels)))
    logger.info("p: %s", str(precision_score(true_labels, predict_labels)))
    logger.info("r: %s", str(recall_score(true_labels, predict_labels)))
    logger.info("f1: %s", str(f1_score(true_labels, predict_labels)))
    logger.info("classification report: ")
    logger.info(
        str(
            classification_report(true_labels,
                                  predict_labels,
                                  mode='strict',
                                  scheme=IOB2)))
    logger.info("\n")

    with open(output_predict_file, "w", encoding="utf-8") as writer:
        for record in results:
            writer.write(record)

    with open(error_predict_file, "w", encoding="utf-8") as writer:
        for record in error_results:
            writer.write(record)
    for c in cur:
        if c == 0:
            aa.append('O')
        else:
            aa.append(ind2label[c])

    # print (aa)
    depad_pred.append(aa)

    # _ = input("Type something to test this out: ")

print("============================================================")
flat_pred = [item for sublist in depad_pred for item in sublist]
flat_y = [item for sublist in y for item in sublist]
flat_X = [item for sublist in X for item in sublist]

print(flat_pred[:20])
# print (flat_y[:20])
print(flat_X[:20])

pred_idx = [label2ind[c] for c in flat_pred]
y_idx = [label2ind[c] for c in flat_y]

# print (pred_idx[:100])
# print (y_idx[:100])

print(f1_score(flat_y, flat_pred))
print(accuracy_score(flat_y, flat_pred))
print(classification_report(flat_y, flat_pred))
a = input("here we are ....")
예제 #21
0
def evaluate(args, model, UniDataSet, label_list, task):
    
    dataset = UniDataSet.load_single_dataset(task, "dev")
    task_id = UniDataset.task_map[task]
    label_list = UniDataSet[task_id]

    if torch.cuda.device_count() > 0: 
        eval_batch_size = torch.cuda.device_count() * args.mini_batch_size
    else:
        eval_batch_size = args.per_gpu_eval_batch_size
    eval_sampler = SequentialSampler(eval_dataset)
    eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=eval_batch_size)

    logger.info(" *** Runing {} evaluation ***".format(task)) 
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", eval_batch_size)
    nb_eval_steps = 0
    preds = None
    out_label_ids = None
    model.eval()

    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        batch = tuple(t.to(args.device) for t in batch)

        with torch.no_grad():
            inputs = {
                "input_ids":batch[0],
                "attention_mask":batch[1],
                "token_type_ids":batch[2],
                "task_id":task_id}
            
            outputs = model(**inputs)

            if args.do_alpha:
                alpha = outputs[0]
                outputs = outputs[1:]
            _ , logits = outputs[:2]

        nb_eval_steps += 1
        if preds is None:
            preds = logits.detach().cpu().numpy()
            out_label_ids = inputs["labels"].detach().cpu().numpy()
        else:
            preds = np.append(preds, logits.detach().cpu().numpy, axis=0)
            out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
    
    preds = np.argmax(preds, axis=2)

    label_map = {i: label for i, label in enumerate(labels)}

    out_label_list = [[] for _ in range(out_label_ids.shape[0])]
    preds_list = [[] for _ in range(out_label_ids.shape[0])]

    for i in range(out_label_ids.shape[0]):
        for j in range(out_label_ids.shape[1]):
            if out_label_ids[i, j] != pad_token_label_id:
                out_label_list[i].append(label_map[out_label_ids[i][j]])
                preds_list[i].append(label_map[preds[i][j]])
    
    results = {}
    results["a"] = accuracy_score(out_label_list, preds_list)
    results["p"] = precision_score(out_label_list, preds_list)
    results["r"] = recall_score(out_label_list, preds_list)
    results["f"] = f1_score(out_label_list, preds_list)

    return results
예제 #22
0
def rcml_main(args):
    logger.info('KB-ALBERT 중요 정보 추출기 동작')

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)

    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    processor = NerProcessor()
    converter = convert_examples_to_features_ner

    label_list = processor.get_labels(args.data_dir)
    label_map = {i: label for i, label in enumerate(label_list)}
    num_labels = len(label_list)

    tokenizer = KbAlbertCharTokenizer.from_pretrained(args.bert_model_path)

    train_sen_examples = None
    eval_sen_examples = None
    test_sen_examples = None

    num_train_optimization_steps = None

    if args.do_train:
        train_sen_examples = processor.get_train_examples(args.data_dir)
        eval_sen_examples = processor.get_dev_examples(args.data_dir)

        train_sen_features = converter(train_sen_examples, label_list,
                                       args.max_seq_length, tokenizer)
        eval_sen_features = converter(eval_sen_examples, label_list,
                                      args.max_seq_length, tokenizer)

        num_train_optimization_steps = int(
            len(train_sen_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    if args.do_test:
        if args.do_prototype:
            test_sen_examples = processor.get_prototype_examples(args.data_dir)
        else:
            test_sen_examples = processor.get_test_examples(args.data_dir)
        test_sen_features = converter(test_sen_examples, label_list,
                                      args.max_seq_length, tokenizer)

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
            args.local_rank))
    config = AlbertConfig.from_pretrained(args.config_file_name,
                                          num_labels=num_labels,
                                          id2label=label_map)

    if args.do_train:
        model = AlbertForTokenClassification.from_pretrained(
            args.bert_model_path, config=config)

    elif args.do_test:
        model = torch.load(
            os.path.join(args.bert_model_path, args.bert_model_name))

    model.to(device)

    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    if args.do_train:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    ##train_model
    global_step = 0
    if args.do_train:
        # model.unfreeze_bert_encoder()

        if len(train_sen_features) == 0:
            logger.info(
                "The number of train_features is zero. Please check the tokenization. "
            )
            sys.exit()

        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_sen_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        train_sen_input_ids = torch.tensor(
            [f.input_ids for f in train_sen_features], dtype=torch.long)
        train_sen_input_mask = torch.tensor(
            [f.input_mask for f in train_sen_features], dtype=torch.long)
        train_sen_segment_ids = torch.tensor(
            [f.segment_ids for f in train_sen_features], dtype=torch.long)
        train_sen_label_ids = torch.tensor(
            [f.label_id for f in train_sen_features], dtype=torch.long)

        eval_sen_input_ids = torch.tensor(
            [f.input_ids for f in eval_sen_features], dtype=torch.long)
        eval_sen_input_mask = torch.tensor(
            [f.input_mask for f in eval_sen_features], dtype=torch.long)
        eval_sen_segment_ids = torch.tensor(
            [f.segment_ids for f in eval_sen_features], dtype=torch.long)
        eval_sen_label_ids = torch.tensor(
            [f.label_id for f in eval_sen_features], dtype=torch.long)

        train_sen_data = TensorDataset(train_sen_input_ids,
                                       train_sen_input_mask,
                                       train_sen_segment_ids,
                                       train_sen_label_ids)
        eval_sen_data = TensorDataset(eval_sen_input_ids, eval_sen_input_mask,
                                      eval_sen_segment_ids, eval_sen_label_ids)

        train_sen_dataloader = DataLoader(
            train_sen_data,
            batch_size=args.train_batch_size,
            worker_init_fn=lambda _: np.random.seed())
        eval_sen_dataloader = DataLoader(eval_sen_data,
                                         batch_size=args.train_batch_size)

        train_loss_values, valid_loss_values = [], []
        train_acc, valid_acc = [], []
        train_f1, valid_f1 = [], []

        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
            model.train()
            total_loss = 0
            tr_predicted_labels, tr_target_labels = list(), list()

            for step, train_sen_batch in enumerate(
                    tqdm(train_sen_dataloader,
                         total=len(train_sen_dataloader),
                         desc="Iteration")):

                train_sen_batch = tuple(t.to(device) for t in train_sen_batch)
                sen_input_ids, sen_input_mask, sen_segment_ids, train_sen_label_ids = train_sen_batch

                output = model(input_ids=sen_input_ids,
                               attention_mask=sen_input_mask,
                               position_ids=None,
                               token_type_ids=sen_segment_ids,
                               labels=train_sen_label_ids)

                loss = output[0]
                loss.backward()

                total_loss += loss.item()

                logits = output[1].detach().cpu().numpy()
                label_ids = train_sen_label_ids.to('cpu').numpy()

                tr_predicted_labels.extend(
                    [list(p) for p in np.argmax(logits, axis=2)])
                tr_target_labels.extend(label_ids)

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

            tr_loss = total_loss / len(train_sen_dataloader)
            train_loss_values.append(tr_loss)

            tr_pred_tags = [
                label_list[p_i]
                for p, l in zip(tr_predicted_labels, tr_target_labels)
                for p_i, l_i in zip(p, l) if label_list[l_i] != "PAD"
            ]
            tr_target_tags = [
                label_list[l_i] for l in tr_target_labels for l_i in l
                if label_list[l_i] != "PAD"
            ]

            acc = accuracy_score(tr_pred_tags, tr_target_tags)
            f1 = f1_score(tr_pred_tags, tr_target_tags)
            train_acc.append(acc)
            train_f1.append(f1)

            logger.info('')
            logger.info(
                '################### epoch ################### : {}'.format(
                    epoch + 1))
            logger.info(
                '################### train loss ###################: {}'.
                format(tr_loss))
            logger.info(
                '################### train accuracy ###############: {}'.
                format(acc))
            logger.info(
                '################### train f1 score ###############: {}'.
                format(f1))

            eval_loss = 0
            ev_predicted_labels, ev_target_labels = list(), list()

            for eval_sen_batch in eval_sen_dataloader:
                eval_sen_batch = tuple(t.to(device) for t in eval_sen_batch)
                eval_sen_input_ids, eval_sen_input_mask, eval_sen_segment_ids, eval_label_ids = eval_sen_batch

                with torch.no_grad():
                    model.eval()
                    output = model(input_ids=eval_sen_input_ids,
                                   attention_mask=eval_sen_input_mask,
                                   position_ids=None,
                                   token_type_ids=eval_sen_segment_ids,
                                   labels=eval_label_ids)

                logits = output[1].detach().cpu().numpy()
                label_ids = eval_label_ids.to('cpu').numpy()

                eval_loss += output[0].mean().item()

                ev_predicted_labels.extend(
                    [list(p) for p in np.argmax(logits, axis=2)])
                ev_target_labels.extend(label_ids)

            ev_loss = eval_loss / len(eval_sen_dataloader)
            valid_loss_values.append(ev_loss)

            ev_pred_tags = [
                label_list[p_i]
                for p, l in zip(ev_predicted_labels, ev_target_labels)
                for p_i, l_i in zip(p, l) if label_list[l_i] != "PAD"
            ]
            ev_target_tags = [
                label_list[l_i] for l in ev_target_labels for l_i in l
                if label_list[l_i] != "PAD"
            ]

            acc = accuracy_score(ev_pred_tags, ev_target_tags)
            f1 = f1_score(ev_pred_tags, ev_target_tags)
            valid_acc.append(acc)
            valid_f1.append(f1)

            logger.info('')
            logger.info(
                '################### valid loss ###################: {}'.
                format(ev_loss))
            logger.info(
                '################### valid accuracy ###############: {}'.
                format(acc))
            logger.info(
                '################### valid f1 score ###############: {}'.
                format(f1))

            model_to_save = model.module if hasattr(model, 'module') else model
            if (epoch + 1) % 5 == 0:
                torch.save(model_to_save.state_dict(),
                           './model/eval_model/{}_epoch.bin'.format(epoch + 1))
                torch.save(model,
                           './model/eval_model/{}_epoch.pt'.format(epoch + 1))
        save_training_result = train_loss_values, train_acc, train_f1, valid_loss_values, valid_acc, valid_f1
        with open('./output_dir/training_history.pkl', 'wb') as f:
            pickle.dump(save_training_result, f)

    if args.do_test:
        # logger.info("***** Running prediction *****")
        # logger.info("  Num examples = %d", len(test_sen_examples))
        # logger.info("  Batch size = %d", args.eval_batch_size)

        test_sen_input_ids = torch.tensor(
            [f.input_ids for f in test_sen_features], dtype=torch.long)
        test_sen_input_mask = torch.tensor(
            [f.input_mask for f in test_sen_features], dtype=torch.long)
        test_sen_segment_ids = torch.tensor(
            [f.segment_ids for f in test_sen_features], dtype=torch.long)
        test_sen_label_ids = torch.tensor(
            [f.label_id for f in test_sen_features], dtype=torch.long)

        test_sen_data = TensorDataset(test_sen_input_ids, test_sen_input_mask,
                                      test_sen_segment_ids, test_sen_label_ids)

        # Run prediction for full data
        test_sen_dataloader = DataLoader(test_sen_data,
                                         batch_size=args.eval_batch_size)
        all_labels = None
        te_predicted_labels, te_target_labels = list(), list()

        for test_sen_batch in tqdm(test_sen_dataloader,
                                   total=len(test_sen_dataloader),
                                   desc='Prediction'):

            test_sen_batch = tuple(t.to(device) for t in test_sen_batch)
            test_sen_input_ids, test_sen_input_mask, test_sen_segment_ids, test_label_ids = test_sen_batch

            with torch.no_grad():
                model.eval()
                output = model(input_ids=test_sen_input_ids,
                               attention_mask=test_sen_input_mask,
                               position_ids=None,
                               token_type_ids=test_sen_segment_ids)

            logits = output[0].detach().cpu().numpy()
            label_ids = test_label_ids.to('cpu').numpy()

            te_predicted_labels.extend(
                [list(p) for p in np.argmax(logits, axis=2)])
            te_target_labels.extend(label_ids)

            te_pred_tags = [
                label_list[p_i]
                for p, l in zip(te_predicted_labels, te_target_labels)
                for p_i, l_i in zip(p, l) if label_list[l_i] != "PAD"
            ]
            te_target_tags = [
                label_list[l_i] for l in te_target_labels for l_i in l
                if label_list[l_i] != "PAD"
            ]

            if all_labels is None:
                all_labels = label_ids
            else:
                all_labels = np.concatenate((all_labels, label_ids), axis=0)

        acc = accuracy_score(te_pred_tags, te_target_tags)
        f1 = f1_score(te_pred_tags, te_target_tags)

        # logger.info('################### test accuracy ###############: {}'.format(acc))
        # logger.info('################### test f1 score ###############: {}'.format(f1))

        # tokenized_testcase = [[tokenizer.tokenize(str(j)) for j in input_example.text_a] for input_example in test_sen_examples]
        tokenized_testcase = [
            tokenizer.tokenize(str(i.text_a)) for i in test_sen_examples
        ]
        # input_data = [{'id': input_example.guid, 'text': input_example.text_a} for input_example in test_sen_examples]

        real_text = pd.DataFrame(tokenized_testcase)
        pred_text = pd.DataFrame(te_predicted_labels)

        pred_text.to_excel('./output_dir/output_ner_pred.xlsx')
        real_text.to_excel('./output_dir/output_ner_tokenized.xlsx')
예제 #23
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--true_data_file",
                        default=None,
                        type=str,
                        required=True,
                        help="The data file containing the true labels.")

    parser.add_argument("--pred_data_file",
                        default=None,
                        type=str,
                        required=True,
                        help="The data file containing the predicted labels.")

    args = parser.parse_args()

    true_label = []
    words = []
    pred_label = []

    true_label_set = set()
    pred_label_set = set()

    true_file = open(args.true_data_file, 'r')

    sentence = []
    label = []

    for line in true_file:
        line = line.strip()
        if line:
            word, tag = line.split()

            if tag != 'O':
                true_label_set.add(tag[2:])
                tag = tag.replace('---', '+')
            else:
                true_label_set.add(tag)
            sentence.append(word)
            label.append(tag)

        else:
            true_label.append(label)
            label = []

    true_file.close()

    print(len(true_label))

    pred_file = open(args.pred_data_file, 'r')

    for line in pred_file:
        line = line.strip()
        if line:
            word, tag = line.split()
            pred_label_set.add(tag)
            if tag != 'O':
                tag = tag.replace('---', '+')
                if not label or label[-1] != tag:
                    tag = 'B-' + tag
                else:
                    # label and label[-1] == tag
                    tag = 'I-' + tag
            sentence.append(word)
            label.append(tag)

        else:
            pred_label.append(label)
            label = []

    pred_file.close()

    assert len(true_label) == len(pred_label)

    print('f1: %f' % (metrics.f1_score(true_label, pred_label)))
    print('precision: %f' % (metrics.precision_score(true_label, pred_label)))
    print('recall: %f' % (metrics.recall_score(true_label, pred_label)))

    print('acc: %f' % (metrics.accuracy_score(true_label, pred_label)))

    print(metrics.classification_report(true_label, pred_label))

    print('true set: ', true_label_set)

    print('pred set: ', pred_label_set)
예제 #24
0
        predictions.extend([list(p) for p in np.argmax(logits, axis=2)])
        true_labels.extend(label_ids)

    eval_loss = eval_loss / len(valid_dataloader)
    validation_loss_values.append(eval_loss)
    print("Validation loss: {}".format(eval_loss))
    pred_tags = [
        tag_values[p_i] for p, l in zip(predictions, true_labels)
        for p_i, l_i in zip(p, l) if tag_values[l_i] != "PAD"
    ]
    valid_tags = [
        tag_values[l_i] for l in true_labels for l_i in l
        if tag_values[l_i] != "PAD"
    ]
    print("Validation Accuracy: {}".format(
        accuracy_score(pred_tags, valid_tags)))
    #print("Validation F1-Score: {}".format(f1_score(pred_tags, valid_tags)))
    print()
# save the model to disk
import joblib
filename = 'finalized_model.sav'
joblib.dump(model, filename)
model = joblib.load(filename)
model.to(device)
test_sentence = """
Ousted WeWork founder Adam Neumann lists his Manhattan penthouse for $37.5 million. 
"""
tokenized_sentence = tokenizer.encode(test_sentence)
input_ids = torch.tensor([tokenized_sentence]).cuda()
with torch.no_grad():
    output = model(input_ids)
예제 #25
0
def ensemble(models, eval_examples, eval_dataset, step, args):
    device = args.device
    logger.info("Predicting...")
    logger.info("***** Running predictions *****")
    logger.info("  Num orig examples = %d", len(eval_examples))
    logger.info("  Num split examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.predict_batch_size)

    if args.local_rank == -1:
        eval_sampler = SequentialSampler(eval_dataset)
    else:
        eval_sampler = DistributedSampler(eval_dataset)
    eval_dataloader = DataLoader(eval_dataset,
                                 sampler=eval_sampler,
                                 batch_size=args.predict_batch_size)

    for model in models:
        model.eval()
    all_labels = []
    all_predictions = []
    logger.info("Start evaluating")

    for input_ids, input_mask, labels in tqdm(eval_dataloader,
                                              desc="Evaluating",
                                              disable=None):
        if len(all_predictions) % 1000 == 0:
            logger.info("Processing example: %d" % (len(all_predictions)))
        input_ids = input_ids.to(device)
        lengths = input_mask.sum(dim=-1)  # batch_size
        input_mask = input_mask.to(device)

        with torch.no_grad():
            logits_list = [model(input_ids, input_mask)[0] for model in models]
            logits = sum(logits_list) / len(logits_list)
            predictions = logits.argmax(dim=-1)  #batch_size * length
            for i in range(len(labels)):
                length = lengths[i]
                eval_label = [
                    id2label_dict[k] for k in labels[i][1:length - 1].tolist()
                ]
                eval_prediction = [
                    id2label_dict[k]
                    for k in predictions[i].cpu()[1:length - 1].tolist()
                ]
                assert len(eval_label) == len(eval_prediction)

                all_labels.append(eval_label)
                all_predictions.append(eval_prediction)

    for model in models:
        model.train()
    #eval
    f1 = f1_score(all_labels, all_predictions) * 100
    precision = precision_score(all_labels, all_predictions) * 100
    accuracy = accuracy_score(all_labels, all_predictions) * 100
    report = classification_report(all_labels, all_predictions)

    logger.info("Eval results:")
    logger.info(f"\nF1 : {f1:.3f}\nP  : {precision:.3f}\nAcc: {accuracy:.3f}")
    logger.info(f"\n{report}")

    output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
    with open(output_eval_file, "a") as writer:
        writer.write(
            f"Step: {step}\nF1: {f1:.3f}\nP: {precision:.3f}\nAcc: {accuracy:.3f}"
        )

    logger.info("Write predictions...")
    output_prediction_file = os.path.join(args.output_dir,
                                          "predictions_%d.json" % step)
    write_predictions(eval_examples, all_labels, all_predictions,
                      output_prediction_file)
예제 #26
0
#Performance Measures----------------->

#BOOK1
print("entity_predictions")
entity_pred = []
for X in B_2[6350:6750]:
    if X.ent_type_ == "GPE" or X.ent_type_ == "PERSON" or X.ent_type_ == "ORG"or X.ent_type_ == "FAC" or X.ent_type_ == "LOC":
        entity_pred.append('B-'+X.ent_type_)
    elif X.ent_type_=="":
        entity_pred.append('O')
print(entity_pred)

entity_pred = [['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'B-PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O'],['B-ORG', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-PERSON', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'],['B-PERSON', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-PERSON', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-PERSON', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O'], ['B-PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O'], ['B-FAC', 'I-FAC', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-PERSON', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O'], ['B-PERSON', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O'], ['B-PERSON', 'O', 'O'], ['B-PERSON', 'O', 'O', 'O','O', 'O', 'O'], ['B-PERSON', 'O', 'O', 'O'], ['B-PERSON', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-PERSON', 'I-PERSON','O', 'O'], ['B-PERSON', 'O', 'O'], ['B-PERSON', 'I-PERSON', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-PERSON', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O']]
entity_true = [['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'B-PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O'],['B-PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-PERSON', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'],['B-PERSON','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-PERSON', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-PERSON', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O'], ['B-PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-LOC', 'I-LOC', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-PERSON', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-PERSON', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O'], ['B-PERSON', 'O', 'O'], ['B-PERSON', 'O', 'O','O', 'O', 'O', 'O'], ['B-PERSON', 'O', 'O', 'O'], ['B-PERSON', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-PERSON','I-PERSON', 'O', 'O'], ['B-PERSON', 'O', 'O'], ['B-PERSON', 'I-PERSON', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-PERSON', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O']]
f1_score(entity_true, entity_pred)
accuracy_score(entity_true, entity_pred)

#BOOK2
entity_pred2 = []
for X in S2[7050:7500]:
    if X.ent_type_ == "GPE" or X.ent_type_ == "PERSON" or X.ent_type_ == "ORG" or X.ent_type_ == "FAC" or X.ent_type_ == "LOC":
        entity_pred2.append(X.ent_type_)
    elif X.ent_type_=="":
        entity_pred2.append('O')
print(entity_pred2)

entity_pred2 =['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'PERSON', 'PERSON', 'PERSON', 'PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'ORG', 'O', 'O', 'O', 'O', 'O', 'O', 'PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'GPE', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'PERSON', 'PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'GPE', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'ORG', 'O', 'O', 'O', 'O', 'O', 'PERSON', 'O', 'O', 'O', 'O', 'PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'ORG', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'ORG', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'GPE', 'GPE', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O']
entity_pred2 = [['O', 'O', 'O', 'O', 'B-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-PERSON', 'I-PERSON', 'O','O'], ['B-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O'], ['B-PERSON', 'I-PERSON', 'I-PERSON', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-LOC', 'O', 'O'], ['B-ORG', 'I-ORG','I-ORG', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-PERSON', 'I-PERSON', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'],['B-GPE', 'O', 'O', 'O', 'O'], ['B-PERSON', 'I-PERSON', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-LOC', 'O', 'O'], ['B-PERSON','I-PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O'], ['B-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'],['B-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O']]
entity_true2 = [['O', 'O', 'O', 'O', 'B-PERSON', 'I-PERSON', 'I-PERSON','I-PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], ['O', 'O','O', 'O'], ['B-PERSON', 'I-PERSON', 'I-PERSON', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O'], ['B-PERSON', 'I-PERSON', 'I-PERSON', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-LOC', 'O', 'O'],['B-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-PERSON','I-PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O'], ['B-GPE', 'O', 'O', 'O', 'O'], ['B-PERSON','I-PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'],['B-LOC', 'O', 'O'], ['B-PERSON', 'I-PERSON', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-PERSON', 'I-PERSON','I-PERSON', 'I-PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], ['B-PERSON', 'I-PERSON','I-PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O','O']]
f1_score(entity_true2, entity_pred2)
accuracy_score(entity_true2, entity_pred2)
예제 #27
0
def evaluate(args, model, tokenizer, labels, pad_token_label_id, mode, prefix="", is_test=False):
	eval_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, data_file=mode, is_test=is_test)

	args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
	# Note that DistributedSampler samples randomly
	eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
	eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

	# multi-gpu evaluate
	if args.n_gpu > 1:
		model = torch.nn.DataParallel(model)

	# Eval!
	logger.info("***** Running evaluation %s *****", prefix)
	logger.info("  Num examples = %d", len(eval_dataset))
	logger.info("  Batch size = %d", args.eval_batch_size)
	eval_loss = 0.0
	nb_eval_steps = 0
	preds = None
	out_label_ids = None
	model.eval()
	for batch in tqdm(eval_dataloader, desc="Evaluating"):
		batch = tuple(t.to(args.device) for t in batch)

		with torch.no_grad():
			inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
			if args.model_type != "distilbert":
				inputs["token_type_ids"] = (
					batch[2] if args.model_type in ["bert", "xlnet"] else None
				)  # XLM and RoBERTa don"t use segment_ids
			outputs = model(**inputs)
			tmp_eval_loss, logits = outputs[:2]

			if args.n_gpu > 1:
				tmp_eval_loss = tmp_eval_loss.mean()  # mean() to average on multi-gpu parallel evaluating

			eval_loss += tmp_eval_loss.item()
		nb_eval_steps += 1
		if preds is None:
			preds = logits.detach().cpu().numpy()
			out_label_ids = inputs["labels"].detach().cpu().numpy()
		else:
			preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
			out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)

	eval_loss = eval_loss / nb_eval_steps
	preds = np.argmax(preds, axis=1)

	label_map = {i: label for i, label in enumerate(labels)}

	out_label_list = []
	preds_list = []
	# import ipdb; ipdb.set_trace()
	for i in range(out_label_ids.shape[0]):
		if out_label_ids[i] != pad_token_label_id:
			out_label_list.append(label_map[out_label_ids[i]])
			preds_list.append(label_map[preds[i]])

	results = {
		"loss": eval_loss,
		"accuracy": accuracy_score(out_label_list, preds_list),
	}

	logger.info("***** Eval results %s *****", prefix)
	for key in sorted(results.keys()):
		logger.info("  %s = %s", key, str(results[key]))

	return results, preds_list
예제 #28
0
def evaluate(args,
             model,
             tokenizer,
             labels,
             pad_token_label_id,
             mode,
             prefix=""):
    eval_dataset = load_and_cache_examples(args,
                                           tokenizer,
                                           labels,
                                           pad_token_label_id,
                                           mode=mode)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(
        eval_dataset) if args.local_rank == -1 else DistributedSampler(
            eval_dataset)
    eval_dataloader = DataLoader(eval_dataset,
                                 sampler=eval_sampler,
                                 batch_size=args.eval_batch_size)

    # Eval!
    logger.info("***** Running evaluation %s *****", prefix)
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    preds = None
    out_label_ids = None
    model.eval()
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        batch = tuple(t.to(args.device) for t in batch)

        with torch.no_grad():
            inputs = {
                "input_ids":
                batch[0],
                "attention_mask":
                batch[1],
                "token_type_ids":
                batch[2] if args.model_type in ["bert", "xlnet"] else None,
                # XLM and RoBERTa don"t use segment_ids
                "labels":
                batch[3]
            }
            outputs = model(**inputs)
            tmp_eval_loss, logits = outputs[:2]

            eval_loss += tmp_eval_loss.item()
        nb_eval_steps += 1
        if preds is None:
            preds = logits.detach().cpu().numpy()
            out_label_ids = inputs["labels"].detach().cpu().numpy()
        else:
            preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
            out_label_ids = np.append(out_label_ids,
                                      inputs["labels"].detach().cpu().numpy(),
                                      axis=0)

    eval_loss = eval_loss / nb_eval_steps
    preds = np.argmax(preds, axis=2)

    label_map = {i: label for i, label in enumerate(labels)}

    out_label_list = [[] for _ in range(out_label_ids.shape[0])]
    preds_list = [[] for _ in range(out_label_ids.shape[0])]

    for i in range(out_label_ids.shape[0]):
        for j in range(out_label_ids.shape[1]):
            if out_label_ids[i, j] != pad_token_label_id:
                out_label_list[i].append(label_map[out_label_ids[i][j]])
                preds_list[i].append(label_map[preds[i][j]])

    results = {
        "loss": eval_loss,
        "precision": precision_score(out_label_list, preds_list),
        "recall": recall_score(out_label_list, preds_list),
        "f1": f1_score(out_label_list, preds_list),
        "accuracy": accuracy_score(out_label_list, preds_list)
    }

    logger.info("***** Eval results %s *****", prefix)
    for key in sorted(results.keys()):
        logger.info("  %s = %s", key, str(results[key]))

    return results, preds_list
예제 #29
0
def predict(args, model, tokenizer, label_list, pad_token_label_id, prefix=""):
    pred_output_dir = args.output_dir
    if not os.path.exists(pred_output_dir):
        os.makedirs(pred_output_dir)
    test_dataset = load_and_cache_examples(args, args.task_name, tokenizer, label_list, pad_token_label_id,data_type='test')
    # Note that DistributedSampler samples randomly
    test_sampler = SequentialSampler(test_dataset)
    test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=1, collate_fn=collate_fn)
    ### 
    span_labels = []
    for label in label_list:
        label = label.split('-')[-1]
        if label not in span_labels:
            span_labels.append(label)
    span_map = {i: label for i, label in enumerate(span_labels)}

    # Eval
    logger.info("***** Running prediction %s *****", prefix)
    logger.info("  Num examples = %d", len(test_dataset))
    logger.info("  Batch size = %d", 1)
    results = []   # 全部测试结果
    error_results=[]   # 预测错误结果
    true_labels = []   # 真实标签
    predict_labels = []   # 预测标签
    output_predict_file = os.path.join(pred_output_dir, prefix, "test_prediction.txt")
    error_predict_file = os.path.join(pred_output_dir, prefix, "Error_test_prediction.txt")
    pbar = ProgressBar(n_total=len(test_dataloader), desc="Predicting")

    if isinstance(model, torch.nn.DataParallel):  # 多GPU训练
        model = model.module
    for step, batch in enumerate(test_dataloader):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {"input_ids": batch[0], "attention_mask": batch[1],
                      "start_positions": batch[5], "end_positions": batch[6]}
            if args.model_type != "distilbert":   # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
            tmp_eval_loss, start_logits, end_logits = outputs[:3]

        start_preds = start_logits.detach().cpu().numpy() 
        end_preds = end_logits.detach().cpu().numpy()

        start_preds = np.argmax(start_preds, axis=2)  
        end_preds = np.argmax(end_preds, axis=2)

        start_preds_list = [span_map[j] for j in start_preds[0][1:-1]]
        end_preds_list = [span_map[j] for j in end_preds[0][1:-1]]

        batch_true_labels = batch[3].squeeze(0).cpu().numpy().tolist()[1:-1]
        batch_true_labels = [args.id2label.get(i) for i in batch_true_labels]
        true_labels.append(batch_true_labels)
        
        batch_predict_labels = convert_span_to_bio([start_preds_list], [end_preds_list])
        predict_labels.extend(batch_predict_labels)
        input_ids = inputs["input_ids"].squeeze(0).cpu().numpy().tolist()[1:-1]
        sent = ""

        ifError=False
        for input_id,pre,lab in zip(input_ids, batch_predict_labels[0], batch_true_labels):
            sent+=" ".join([tokenizer.ids_to_tokens[input_id],lab,pre])+"\n"
            if lab != pre:
                ifError=True
        sent+="\n"
        results.append(sent)
        if ifError:
            error_results.append(sent)
            ifError = False
        pbar(step)
        # 计算测试集 acc, recall, f1

    logger.info("\n测试集结果统计:")
    logger.info("accuary: %s", str(accuracy_score(true_labels, predict_labels)))
    logger.info("p: %s", str(precision_score(true_labels, predict_labels)))
    logger.info("r: %s", str(recall_score(true_labels, predict_labels)))
    logger.info("f1: %s", str(f1_score(true_labels, predict_labels)))
    logger.info("classification report: ")
    logger.info(str(classification_report(true_labels, predict_labels, mode='strict', scheme=IOB2)))
    logger.info("\n")

    with open(output_predict_file, "w",encoding="utf-8") as writer:
        for record in results:
            writer.write(record)

    with open(error_predict_file, "w",encoding="utf-8") as writer:
        for record in error_results:
            writer.write(record)
예제 #30
0
            # Mark=0, meaning its a pad word, dont compare
            if m:
                if tag2name[label_ids[i][j]] != "X" and tag2name[label_ids[i][j]] != "[CLS]" and tag2name[label_ids[i][j]] != "[SEP]" : # Exclude the X label
                    temp_1.append(tag2name[label_ids[i][j]])
                    temp_2.append(tag2name[logits[i][j]])
            else:
                break
        
            
        y_true.append(temp_1)
        y_pred.append(temp_2)

        

print("f1 socre: %f"%(f1_score(y_true, y_pred)))
print("Accuracy score: %f"%(accuracy_score(y_true, y_pred)))

# Get acc , recall, F1 result report
report = classification_report(y_true, y_pred,digits=4)

bert_out_address = 'bert'

# Save the report into file
output_eval_file = os.path.join(bert_out_address, "eval_results.txt")
with open(output_eval_file, "w") as writer:
    print("***** Eval results *****")
    print("\n%s"%(report))
    print("f1 socre: %f"%(f1_score(y_true, y_pred)))
    print("Accuracy score: %f"%(accuracy_score(y_true, y_pred)))
    
    writer.write("f1 socre:\n")