def plot_stacked_hist(self, output_filename=None, dpi=200, kind="barh", fontsize=10, edgecolor="k", lw=1, width=1, ytick_fontsize=10): df = self.get_df() df.T.plot(kind=kind, stacked=True, edgecolor=edgecolor, lw=lw, width=width) ax = pylab.gca() positions = pylab.yticks() #ax.set_yticklabel(positions, labels, fontsize=ytick_fontsize) pylab.xlabel("Percentage (%)", fontsize=fontsize) pylab.ylabel("Sample index/name", fontsize=fontsize) pylab.yticks(fontsize=ytick_fontsize) pylab.legend(title="kingdom") pylab.xlim([0, 100]) if output_filename: pylab.savefig(output_filename, dpi=dpi)
def scatterplot(self, enrich, cutoff=0.05, nmax=10, gene_set_size=[]): df = self._get_final_df(enrich.results, cutoff=cutoff, nmax=nmax) pylab.clf() pylab.scatter(-pylab.log10(df['Adjusted P-value']), range(len(df)), s=10 * df['size'], c=df['size']) pylab.xlabel("Odd ratio") pylab.ylabel("Gene sets") pylab.yticks(range(len(df)), df.name) a, b = pylab.xlim() pylab.xlim([0, b]) pylab.grid(True) ax = pylab.gca() M = max(df['size']) if M > 100: l1, l2, l3 = "10", "100", str(M) else: l1, l2, l3 = str(round(M / 3)), str(round(M * 2 / 3)), str(M) handles = [ pylab.Line2D([0], [0], marker="o", markersize=5, label=l1, ls=""), pylab.Line2D([0], [0], marker="o", markersize=10, label=l2, ls=""), pylab.Line2D([0], [0], marker="o", markersize=15, label=l3, ls="") ] ax.legend(handles=handles, loc="upper left", title="gene-set size") pylab.axvline(1.3, lw=2, ls="--", color="r") pylab.tight_layout() ax = pylab.colorbar(pylab.gci()) return df
def barplot_per_sample(self, alpha=0.5, width=0.8, filename=None): df = self.get_data_reads() # this is ugly but will do the job for now under = df.query("name=='Undetermined'") others = df.query("name!='Undetermined'") under = under.groupby("name").sum().reset_index() others = others.groupby("name").sum().reset_index() under = under[["name", "count"]].set_index("name") others = others[["name", "count"]].set_index("name") all_data = others.sort_index(ascending=False) all_data.columns = ["samples"] # appended at the end all_data.loc['undetermined'] = 0 # revert back all_data = all_data.loc[::-1] # just for legend under.columns = ['undetermined'] if all_data.sum().min() > 1e6: all_data /= 1e6 under /= 1e6 M = True else: M = False all_data.plot(kind="barh", alpha=alpha, zorder=1, width=width, ec='k') under.plot(kind="barh", alpha=alpha, color="red", ax=pylab.gca(), zorder=1, width=width, ec='k') pylab.ylim([-0.5, len(all_data) + 0.5]) if len(all_data) < 100: pylab.yticks(range(len(all_data)), all_data.index) pylab.legend() pylab.grid(True, zorder=-1) if M: pylab.xlabel("Number of reads (M)") else: pylab.xlabel("Number of reads") try: pylab.tight_layout() except: pass if filename: pylab.savefig(filename, dpi=200)
def plot_corr(self): lengths = self.SIRV_data.SIRV.get_lengths_as_dict() spikes = self.spikes_found() spikes["lengths"] = [lengths[k] for k in spikes.index] corr = spikes.corr() pylab.imshow(corr) N = len(spikes.columns) pylab.xticks(range(N), spikes.columns, rotation=90) pylab.yticks(range(N), spikes.columns) pylab.clim(0,1) pylab.colorbar()
def plot_corr(self): lengths = self.SIRV_data.SIRV.get_lengths_as_dict() spikes = self.spikes_found() spikes["lengths"] = [lengths[k] for k in spikes.index] corr = spikes.corr() pylab.imshow(corr) N = len(spikes.columns) pylab.xticks(range(N), spikes.columns, rotation=90) pylab.yticks(range(N), spikes.columns) pylab.clim(0, 1) pylab.colorbar()
def barplot(self, enrich, cutoff=0.05, nmax=10): df = self._get_final_df(enrich.results, cutoff=cutoff, nmax=nmax) pylab.clf() pylab.barh(range(len(df)), -pylab.log10(df['Adjusted P-value'])) pylab.yticks(range(len(df)), df.name) pylab.axvline(1.3, lw=2, ls="--", color="r") pylab.grid(True) pylab.xlabel("Adjusted p-value (log10)") pylab.ylabel("Gene sets") a, b = pylab.xlim() pylab.xlim([0, b]) pylab.tight_layout() return df
def plot(self, interpolation='None', aspect='auto', cmap='hot', tight_layout=True, colorbar=True, fontsize_x=None, fontsize_y=None, rotation_x=90, xticks_on=True, yticks_on=True, **kargs): """wrapper around imshow to plot a dataframe :param interpolation: set to None :param aspect: set to 'auto' :param cmap: colormap to be used. :param tight_layout: :param colorbar: add a colobar (default to True) :param fontsize_x: fontsize on xlabels :param fontsize_y: fontsize on ylabels :param rotation_x: rotate labels on xaxis :param xticks_on: switch off the xticks and labels :param yticks_on: switch off the yticks and labels """ data = self.df pylab.clf() pylab.imshow(data, interpolation=interpolation, aspect=aspect, cmap=cmap, **kargs) if fontsize_x == None: fontsize_x = 16 #FIXME use default values if fontsize_y == None: fontsize_y = 16 #FIXME use default values if yticks_on is True: pylab.yticks(range(0, len(data.index)), data.index, fontsize=fontsize_y) else: pylab.yticks([]) if xticks_on is True: pylab.xticks(range(0, len(data.columns[:])), data.columns, fontsize=fontsize_x, rotation=rotation_x) else: pylab.xticks([]) if colorbar is True: pylab.colorbar() if tight_layout: pylab.tight_layout()
def plot_go_terms(self, ontologies, max_features=50, log=False, fontsize=8, minimum_genes=0, pvalue=0.05, cmap="summer_r", sort_by="fold_enrichment", show_pvalues=False, include_negative_enrichment=False, fdr_threshold=0.05, compute_levels=True, progress=True): assert sort_by in ['pValue', 'fold_enrichment', 'fdr'] # FIXME: pvalue and fold_enrichment not sorted in same order pylab.clf() df = self.get_data( ontologies, include_negative_enrichment=include_negative_enrichment, fdr=fdr_threshold) if len(df) == 0: return df df = df.query("pValue<=@pvalue") logger.info("Filtering out pvalue>{}. Kept {} GO terms".format( pvalue, len(df))) df = df.reset_index(drop=True) # Select a subset of the data to keep the best max_features in terms of # pValue subdf = df.query("number_in_list>@minimum_genes").copy() logger.info( "Filtering out GO terms with less than {} genes: Kept {} GO terms". format(minimum_genes, len(subdf))) logger.info("Filtering out the 3 parent terms") subdf = subdf.query("id not in @self.ontologies") # Keeping only a part of the data, sorting by pValue if sort_by == "pValue": subdf = subdf.sort_values(by="pValue", ascending=False).iloc[-max_features:] df = df.sort_values(by="pValue", ascending=False) elif sort_by == "fold_enrichment": subdf = subdf.sort_values(by="abs_log2_fold_enrichment", ascending=True).iloc[-max_features:] df = df.sort_values(by="abs_log2_fold_enrichment", ascending=False) elif sort_by == "fdr": subdf = subdf.sort_values(by="fdr", ascending=False).iloc[-max_features:] df = df.sort_values(by="fdr", ascending=False) subdf = subdf.reset_index(drop=True) # We get all levels for each go id. # They are stored by MF, CC or BP if compute_levels: paths = self.get_graph(list(subdf['id'].values), progress=progress) levels = [] keys = list(paths.keys()) goid_levels = paths[keys[0]] if len(keys) > 1: for k in keys[1:]: goid_levels.update(paths[k]) levels = [goid_levels[ID] for ID in subdf['id'].values] subdf["level"] = levels else: subdf['level'] = "" N = len(subdf) size_factor = 12000 / len(subdf) max_size = subdf.number_in_list.max() min_size = subdf.number_in_list.min() sizes = [ max(max_size * 0.2, x) for x in size_factor * subdf.number_in_list.values / subdf.number_in_list.max() ] m1 = min(sizes) m3 = max(sizes) m2 = m1 + (m3 - m1) / 2 if log: pylab.scatter(pylab.log2(subdf.fold_enrichment), range(len(subdf)), c=subdf.fdr, s=sizes, cmap=cmap, alpha=0.8, ec="k", vmin=0, vmax=fdr_threshold, zorder=10) #pylab.barh(range(N), pylab.log2(subdf.fold_enrichment), color="r", # label="pvalue>0.05; FDR>0.05") #pylab.axvline(1, color="gray", ls="--") #pylab.axvline(-1, color="gray", ls="--") else: pylab.scatter(subdf.fold_enrichment, range(len(subdf)), c=subdf.fdr, cmap=cmap, s=sizes, ec="k", alpha=.8, vmin=0, vmax=fdr_threshold, zorder=10) # pylab.barh(range(N), subdf.fold_enrichment, color="r", # label="not significant") pylab.grid(zorder=-10) ax2 = pylab.colorbar(shrink=0.5) ax2.ax.set_ylabel('FDR') labels = [ x if len(x) < 50 else x[0:47] + "..." for x in list(subdf.label) ] ticks = [ "{} ({}) {}".format(ID, level, "; " + label.title()) for level, ID, label in zip(subdf['level'], subdf.id, labels) ] pylab.yticks(range(N), ticks, fontsize=fontsize, ha='left') yax = pylab.gca().get_yaxis() try: pad = [x.label.get_window_extent().width for x in yax.majorTicks] yax.set_tick_params(pad=max(pad)) except: yax.set_tick_params(pad=60 * fontsize * 0.7) yax.set_tick_params(pad=60 * fontsize * 0.6) fc_max = subdf.fold_enrichment.max(skipna=True) fc_min = subdf.fold_enrichment.min(skipna=True) # go into log2 space fc_max = pylab.log2(fc_max) fc_min = pylab.log2(fc_min) abs_max = max(fc_max, abs(fc_min), 1) if log: fc_max = abs_max * 1.5 else: fc_max = 2**abs_max * 1.2 pylab.axvline(0, color="k", lw=2) if log: pylab.xlabel("Fold Enrichment (log2)") else: pylab.xlabel("Fold Enrichment") if include_negative_enrichment: pylab.xlim([-fc_max, fc_max]) else: pylab.xlim([0, fc_max]) pylab.tight_layout() # The pvalue: if show_pvalues: ax = pylab.gca().twiny() ax.set_xlim([0, max(-pylab.log10(subdf.pValue)) * 1.2]) ax.set_xlabel("p-values (log10)", fontsize=12) ax.plot(-pylab.log10(subdf.pValue), range(len(subdf)), label="pvalue", lw=2, color="k") ax.axvline(1.33, lw=1, ls="--", color="grey", label="pvalue=0.05") pylab.tight_layout() pylab.legend(loc="lower right") s1 = pylab.scatter([], [], s=m1, marker='o', color='#555555', ec="k") s2 = pylab.scatter([], [], s=m2, marker='o', color='#555555', ec="k") s3 = pylab.scatter([], [], s=m3, marker='o', color='#555555', ec="k") if len(subdf) < 10: labelspacing = 1.5 * 4 borderpad = 4 handletextpad = 2 elif len(subdf) < 20: labelspacing = 1.5 * 2 borderpad = 1 handletextpad = 2 else: labelspacing = 1.5 borderpad = 2 handletextpad = 2 if len(subdf) >= 3: leg = pylab.legend( (s1, s2, s3), (str(int(min_size)), str(int(min_size + (max_size - min_size) / 2)), str(int(max_size))), scatterpoints=1, loc='lower right', ncol=1, frameon=True, title="gene-set size", labelspacing=labelspacing, borderpad=borderpad, handletextpad=handletextpad, fontsize=8) else: leg = pylab.legend((s1, ), (str(int(min_size)), ), scatterpoints=1, loc='lower right', ncol=1, frameon=True, title="gene-set size", labelspacing=labelspacing, borderpad=borderpad, handletextpad=handletextpad, fontsize=8) frame = leg.get_frame() frame.set_facecolor('#b4aeae') frame.set_edgecolor('black') frame.set_alpha(1) self.subdf = subdf self.df = df return df