def run(): args = get_args() config = from_yaml(Config, Path(args.config).read_text()) state_dict = torch.load(args.model)["state_dict"] state_dict = { key[6:]: val for key, val in state_dict.items() if key.startswith("model.") } model = EfficientNet.from_name(config.model, num_classes=1) print(model.load_state_dict(state_dict)) model.eval() image = cv2.imread(args.target)[:, :, :3] images = image.transpose( (2, 0, 1))[None, :, :, :].astype(np.float32) / 255.0 bgr_image = torch.tensor(images) images = image.transpose( (2, 0, 1))[None, ::-1, :, :].astype(np.float32) / 255.0 rgb_image = torch.tensor(images) with torch.no_grad(): output = model.forward(bgr_image) prediction = ChannelOrder.BGR if output < 0.5 else ChannelOrder.RGB print(f"BGR image prediction is {prediction}. Output is {output}") output = model.forward(rgb_image) prediction = ChannelOrder.BGR if output < 0.5 else ChannelOrder.RGB print(f"RGB image prediction is {prediction}. Output is {output}") cv2.imshow("BGR", image) cv2.imshow("RGB", image[:, :, ::-1]) cv2.waitKey()
def main(): with open('app.yml') as f: yml = f.read() cfg = from_yaml(App, yml) print(cfg) load_env(cfg, prefix='APP') print(cfg)
def run(): args = get_args() config = from_yaml(Config, Path(args.config).read_text()) logger = TestTubeLogger( save_dir=str(config.save_dir), name=config.experiment_name, version=config.version, ) app = TrainSystem(config) trainer = Trainer( min_epochs=50, max_epochs=config.epochs, auto_lr_find=True, auto_scale_batch_size=True, logger=logger, auto_select_gpus=True, gpus=[0], num_processes=2, precision=16, callbacks=[EarlyStopping(monitor="val_loss")], ) trainer.fit(app) trainer.test(app)
def main(): with open('swagger.yml') as f: yaml = f.read() swagger = from_yaml(Swagger, yaml) print(swagger)