def main(): experiment_name = "lani-asynchronous-training" experiment = "./results/" + experiment_name print("EXPERIMENT NAME: ", experiment_name) # Create the experiment folder if not os.path.exists(experiment): os.makedirs(experiment) # Define log settings log_path = experiment + '/train_baseline.log' multiprocess_logging_manager = MultiprocessingLoggerManager( file_path=log_path, logging_level=logging.INFO) master_logger = multiprocess_logging_manager.get_logger("Master") master_logger.log( "----------------------------------------------------------------") master_logger.log( " STARING NEW EXPERIMENT ") master_logger.log( "----------------------------------------------------------------") with open("data/nav_drone/config_localmoves_6000.json") as f: config = json.load(f) with open("data/shared/contextual_bandit_constants.json") as f: constants = json.load(f) print(json.dumps(config, indent=2)) setup_validator = NavDroneSetupValidator() setup_validator.validate(config, constants) # log core experiment details master_logger.log("CONFIG DETAILS") for k, v in sorted(config.items()): master_logger.log(" %s --- %r" % (k, v)) master_logger.log("CONSTANTS DETAILS") for k, v in sorted(constants.items()): master_logger.log(" %s --- %r" % (k, v)) master_logger.log("START SCRIPT CONTENTS") with open(__file__) as f: for line in f.readlines(): master_logger.log(">>> " + line.strip()) master_logger.log("END SCRIPT CONTENTS") action_space = ActionSpace(config["action_names"], config["stop_action"]) meta_data_util = MetaDataUtil() # Number of processes num_processes = 6 try: # Create the model master_logger.log("CREATING MODEL") model_type = IncrementalModelOracleGoldProb shared_model = model_type(config, constants) # Initialize the model using random weights or from a file shared_model.init_weights() # shared_model.load_saved_model( # "./results/model-folder-name/contextual_bandit_5_epoch_19") # Make the shared model use share memory shared_model.share_memory() master_logger.log("MODEL CREATED") print("Created Model...") # Read the dataset all_train_data = DatasetParser.parse( "data/nav_drone/train_annotations_6000.json", config) num_train = (len(all_train_data) * 19) // 20 while all_train_data[num_train].get_scene_name().split("_")[1] \ == all_train_data[num_train - 1].get_scene_name().split("_")[1]: num_train += 1 train_split = all_train_data[:num_train] tune_split = all_train_data[num_train:] master_logger.log("Created train dataset of size %d " % len(train_split)) master_logger.log("Created tuning dataset of size %d " % len(tune_split)) processes = [] # The simulator file is used to launch the client simulator_file = "./simulators/NavDroneLinuxBuild.x86_64" # Split the train data between processes train_split_process_chunks = [] chunk_size = int(len(train_split) / num_processes) pad = 0 for i in range(0, num_processes): chunk = train_split[pad:pad + chunk_size] pad += chunk_size train_split_process_chunks.append(chunk) # Start the training thread(s) ports = find_k_ports(num_processes) for i, port in enumerate(ports): train_chunk = train_split_process_chunks[i] tmp_config = {k: v for k, v in config.items()} tmp_config["port"] = port if i == num_processes - 1: # Master client which does testing. Don't want each client to do testing. tmp_tune_split = tune_split else: tmp_tune_split = [] print("Client " + str(i) + " getting a validation set of size ", len(tmp_tune_split)) server = NavDroneServerPy3(tmp_config, action_space, multi_client=True) client_logger = multiprocess_logging_manager.get_logger(i) p = mp.Process(target=AsynchronousContextualBandit.do_train, args=(simulator_file, shared_model, tmp_config, action_space, meta_data_util, constants, train_chunk, tmp_tune_split, experiment, experiment_name, i, server, client_logger, model_type)) p.daemon = False p.start() processes.append(p) for p in processes: p.join() except Exception: exc_info = sys.exc_info() traceback.print_exception(*exc_info)
logging.info("START SCRIPT CONTENTS") with open(__file__) as f: for line in f.readlines(): logging.info(">>> " + line.strip()) logging.info("END SCRIPT CONTENTS") action_space = ActionSpace(config["action_names"], config["stop_action"]) meta_data_util = MetaDataUtil() # Find a free port ports = find_k_ports(1) config["port"] = ports[0] # Create the server logging.log(logging.DEBUG, "STARTING SERVER") server = NavDroneServerPy3(config, action_space) logging.log(logging.DEBUG, "STARTED SERVER") try: # Create the model logging.log(logging.DEBUG, "CREATING MODEL") model = IncrementalModelOracleGoldProb(config, constants, use_image=False) model.load_saved_model( "./results/oracle_gold_prob_cb_6000/contextual_bandit_5_epoch_17") logging.log(logging.DEBUG, "MODEL CREATED") # Create the agent logging.log(logging.DEBUG, "STARTING AGENT") agent = Agent(server=server,
def main(): experiment_name = "a3c_ga_chaplot_baseline_6000paragraphs" experiment = "./results/" + experiment_name print("EXPERIMENT NAME: ", experiment_name) # Create the experiment folder if not os.path.exists(experiment): os.makedirs(experiment) # Define log settings log_path = experiment + '/train_baseline.log' multiprocess_logging_manager = MultiprocessingLoggerManager( file_path=log_path, logging_level=logging.INFO) master_logger = multiprocess_logging_manager.get_logger("Master") master_logger.log("----------------------------------------------------------------") master_logger.log(" STARING NEW EXPERIMENT ") master_logger.log("----------------------------------------------------------------") parser = argparse.ArgumentParser(description='Gated-Attention for Grounding') # Environment arguments parser.add_argument('-l', '--max-episode-length', type=int, default=50, help='maximum length of an episode (default: 40)') parser.add_argument('-d', '--difficulty', type=str, default="hard", help="""Difficulty of the environment, "easy", "medium" or "hard" (default: hard)""") parser.add_argument('--living-reward', type=float, default=0, help="""Default reward at each time step (default: 0, change to -0.005 to encourage shorter paths)""") parser.add_argument('--frame-width', type=int, default=300, help='Frame width (default: 300)') parser.add_argument('--frame-height', type=int, default=168, help='Frame height (default: 168)') parser.add_argument('-v', '--visualize', type=int, default=0, help="""Visualize the envrionment (default: 0, use 0 for faster training)""") parser.add_argument('--sleep', type=float, default=0, help="""Sleep between frames for better visualization (default: 0)""") parser.add_argument('--scenario-path', type=str, default="maps/room.wad", help="""Doom scenario file to load (default: maps/room.wad)""") parser.add_argument('--interactive', type=int, default=0, help="""Interactive mode enables human to play (default: 0)""") parser.add_argument('--all-instr-file', type=str, default="data/instructions_all.json", help="""All instructions file (default: data/instructions_all.json)""") parser.add_argument('--train-instr-file', type=str, default="data/instructions_train.json", help="""Train instructions file (default: data/instructions_train.json)""") parser.add_argument('--test-instr-file', type=str, default="data/instructions_test.json", help="""Test instructions file (default: data/instructions_test.json)""") parser.add_argument('--object-size-file', type=str, default="data/object_sizes.txt", help='Object size file (default: data/object_sizes.txt)') # A3C arguments parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 0.001)') parser.add_argument('--gamma', type=float, default=0.99, metavar='G', help='discount factor for rewards (default: 0.99)') parser.add_argument('--tau', type=float, default=1.00, metavar='T', help='parameter for GAE (default: 1.00)') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('-n', '--num-processes', type=int, default=6, metavar='N', help='how many training processes to use (default: 6)') parser.add_argument('--num-steps', type=int, default=20, metavar='NS', help='number of forward steps in A3C (default: 20)') parser.add_argument('--load', type=str, default="0", help='model path to load, 0 to not reload (default: 0)') parser.add_argument('-e', '--evaluate', type=int, default=0, help="""0:Train, 1:Evaluate MultiTask Generalization 2:Evaluate Zero-shot Generalization (default: 0)""") parser.add_argument('--dump-location', type=str, default="./saved/", help='path to dump models and log (default: ./saved/)') args = parser.parse_args() print(args) with open("data/nav_drone/config_localmoves_6000.json") as f: config = json.load(f) with open("data/shared/contextual_bandit_constants.json") as f: constants = json.load(f) print(json.dumps(config,indent=2)) setup_validator = NavDroneSetupValidator() setup_validator.validate(config, constants) args.input_size = config['vocab_size'] + 2 # log core experiment details master_logger.log("CONFIG DETAILS") for k, v in sorted(config.items()): master_logger.log(" %s --- %r" % (k, v)) master_logger.log("CONSTANTS DETAILS") for k, v in sorted(constants.items()): master_logger.log(" %s --- %r" % (k, v)) master_logger.log("START SCRIPT CONTENTS") with open(__file__) as f: for line in f.readlines(): master_logger.log(">>> " + line.strip()) master_logger.log("END SCRIPT CONTENTS") action_space = ActionSpace(config["action_names"], config["stop_action"]) meta_data_util = MetaDataUtil() try: # create tensorboard tensorboard = None # Tensorboard(experiment_name) # Create the model master_logger.log("CREATING MODEL") model_type = a3c_lstm_ga_default shared_model = model_type(args, config=config) # make the shared model use share memory shared_model.share_memory() lstm_size = 256 if isinstance(shared_model, a3c_lstm_ga_concat_gavector): lstm_size *= 3 contextual_bandit = False model = ChaplotBaseline(args, shared_model, config, constants, tensorboard, use_contextual_bandit=contextual_bandit, lstm_size=lstm_size) # model.load_image_text_model("./results/realdata_goal_prediction_supervised_trajectories" # "/chaplot_model_client_5_epoch_36") master_logger.log("MODEL CREATED") print("Created Model...") # Read the dataset all_train_data = DatasetParser.parse("data/nav_drone/train_annotations_6000.json", config) num_train = (len(all_train_data) * 19) // 20 while all_train_data[num_train].get_scene_name().split("_")[1] \ == all_train_data[num_train - 1].get_scene_name().split("_")[1]: num_train += 1 train_split = all_train_data[:num_train] tune_split = all_train_data[num_train:] master_logger.log("Created train dataset of size %d " % len(train_split)) master_logger.log("Created tuning dataset of size %d " % len(tune_split)) processes = [] # Split the train data between processes train_split_process_chunks = [] chunk_size = int(len(train_split)/args.num_processes) pad = 0 for i in range(0, args.num_processes): chunk = train_split[pad: pad + chunk_size] pad += chunk_size train_split_process_chunks.append(chunk) # Start the training thread(s) ports = find_k_ports(args.num_processes) for i, port in enumerate(ports): train_chunk = train_split_process_chunks[i] tmp_config = {k: v for k, v in config.items()} tmp_config["port"] = port if i == args.num_processes - 1: # Master client which does testing. Don't want each client to do testing. tmp_tune_split = tune_split else: tmp_tune_split = [] print ("Client " + str(i) + " getting a validation set of size ", len(tmp_tune_split)) server = NavDroneServerPy3(tmp_config, action_space, multi_client=True) client_logger = multiprocess_logging_manager.get_logger(i) p = mp.Process(target=ChaplotBaseline.do_train, args=(model, shared_model, tmp_config, action_space, meta_data_util, args, constants, train_chunk, tmp_tune_split, experiment, experiment_name, i, server, client_logger, model_type, contextual_bandit)) p.daemon = False p.start() processes.append(p) for p in processes: p.join() except Exception: exc_info = sys.exc_info() traceback.print_exception(*exc_info)