예제 #1
0
파일: app.py 프로젝트: yes-github/bootcamp
def do_search_api():
    input_args = reqparse.RequestParser(). \
        add_argument("Table", type=str). \
        add_argument("Num", type=int, default=1). \
        add_argument("Caption", type=str). \
        parse_args()

    captions = input_args['Caption']
    print(captions)
    table_name = input_args['Table']
    top_k = input_args['Num']
    if not table_name:
        table_name = DEFAULT_TABLE
        print(table_name)
    if not captions:
        return "no captions", 400
    if captions:
        # filename = secure_filename(file.filename)
        # file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
        # file.save(file_path)
        res_id, res_distance = do_search(table_name, captions, top_k, model, args)
        if isinstance(res_id, str):
            return res_id
        # res_img = [request.url_root + "data/" + x for x in res_id]
        # res = dict(zip(res_img, res_distance))
        # res = sorted(res.items(), key=lambda item: item[1])
        # return jsonify(res), 200
    return "not found", 400
예제 #2
0
파일: app.py 프로젝트: nameczz/MolSearch
def do_search_api():
    args = reqparse.RequestParser(). \
        add_argument("Molecular", type=str). \
        add_argument("Type", type=str, default='similarity'). \
        add_argument("Cid", type=int). \
        parse_args()

    molecular_name = args['Molecular']
    search_type = args['Type']
    cid_num = args['Cid']

    if search_type == 'similarity':
        table_name = SIM_TABLE
    elif search_type == 'substructure':
        table_name = SUB_TABLE
    elif search_type == 'superstructure':
        table_name = SUPER_TABLE
    top_k = NUM

    if cid_num:
        from pubchempy import get_compounds, Compound
        comp = Compound.from_cid(cid_num)
        molecular_name = comp.isomeric_smiles

    if not molecular_name:
        return "no molecular"
    if molecular_name:
        try:
            res_smi = do_search(table_name, molecular_name, top_k)
        except:
            return "There has no results, please input the correct molecular and ensure the table has data."
        re = {}
        re["Smiles"] = res_smi
        return jsonify(re), 200
    return "not found", 400
예제 #3
0
def do_search_api():
    args = reqparse.RequestParser(). \
        add_argument("Table", type=str). \
        add_argument("Num", type=int, default=1). \
        parse_args()

    table_name = args['Table']
    if not table_name:
        table_name = DEFAULT_TABLE
    top_k = args['Num']
    file = request.files.get('file', "")
    if not file:
        return "no file data", 400
    if not file.name:
        return "need file name", 400
    if file:
        filename = secure_filename(file.filename)
        file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
        file.save(file_path)
        res_id, res_distance = do_search(table_name, file_path, top_k, model,
                                         graph, sess)
        if isinstance(res_id, str):
            return res_id
        res_img = [request.url_root + "data/" + x for x in res_id]
        res = dict(zip(res_img, res_distance))
        res = sorted(res.items(), key=lambda item: item[1])
        print(jsonify(res))
        return jsonify(res), 200
    return "not found", 400
예제 #4
0
def do_search_images_api():
    args = reqparse.RequestParser(). \
        add_argument('Id', type=str). \
        add_argument('Table', type=str). \
        add_argument('Image', type=str). \
        add_argument('FileId', type=str). \
        add_argument('FileImage', type=str). \
        parse_args()

    file_id = request.files.get('FileId', "")
    file_image = request.files.get('FileImage', "")
    table_name = args['Table']

    if file_id:
        ids = str(file_id.read().decode("utf-8")).strip().split(",")
        ids = ids[:-1]
    else:
        ids = args['Id'].split(",")

    if file_image:
        image = str(file_image.read().decode("utf-8")).strip().split(",")
        image = image[:-1]
    else:
        image = args['Image'].split(",")

    try:
        index_client, conn, cursor = init_conn()
        result, distance = do_search(index_client, conn, cursor, img_to_vec,
                                     image, table_name)
        print("----------------search_results:", result, distance)

        # Python 字典类型转换为 JSON 对象
        result_dic = {"code": 0, "msg": "success"}
        data = []
        for i in range(len(ids)):
            id_dis = []
            for j in range(len(result[i])):
                id_sim = {"id": result[i][j], "similarity": distance[i][j]}
                id_dis.append(id_sim)
            re_sim = {"id": ids[i], "similarImages": id_dis}
            data.append(re_sim)

        result_dic["data"] = data
        # with open("results_0630.txt","w") as f:
        #    f.write(str(ids).replace('[','').replace(']','').replace('\'','').replace('‘','')+'\n')
        #    f.write("\n")
        #    for i in result:
        #        f.write(str(i).replace('[','').replace(']','').replace('\'','').replace('‘','')+'\n')

        # return "{0},{1}".format(ids, result), 200
        return result_dic, 200

    except Exception as e:
        write_log(e, 1)
        return "Error with {}".format(e), 400
예제 #5
0
def do_search_images_api(request: Request, search_id: list, table_name: str=None):
    try:
        index_client, conn, cursor = init_conn()
        host = request.headers['host']
        img_list = get_img_list()
        list_id = do_search(index_client, conn, cursor, img_list, search_id, table_name)
        # print("--------", list_id)
        info = get_list_info(conn, cursor, table_name, host, list_id)
        return info, 200

    except Exception as e:
        logging.error(e)
        return "Error with {}".format(e), 400
예제 #6
0
파일: main.py 프로젝트: yes-github/bootcamp
async def do_search_images_api(request: Request, Text: str, Image: UploadFile = File(...), table_name: str=None):
    try:
        index_client, conn, cursor = init_conn()
        host = request.headers['host']
        content = await Image.read()
        with open ("./test/test.png" ,'wb') as f :
            f.write(content)
        Image ="./test/test.png"
        img_list = get_img_list()
        list_id = do_search(index_client, conn, cursor ,Text, Image,table_name,img_list,host)
        print("--------", list_id)
        return list_id, 200
    except Exception as e:
        logging.error(e)
        print(traceback.format_exc())
예제 #7
0
def do_search_api():
    args = reqparse.RequestParser(). \
        add_argument("Table", type=str). \
        add_argument("Num", type=int, default=1). \
        add_argument("Molecular", type=str). \
        parse_args()

    table_name = args['Table']
    if not table_name:
        table_name = DEFAULT_TABLE
    top_k = args['Num']
    molecular_name = args['Molecular']
    if not molecular_name:
        return "no molecular"
    if molecular_name:
        try:
            shutil.rmtree(UPLOAD_PATH)
            os.mkdir(UPLOAD_PATH)
        except:
            print("cannot remove:", UPLOAD_PATH)
        try:
            res_smi, res_distance, ids = do_search(table_name, molecular_name,
                                                   top_k)
        except:
            return "There has no results, please input the correct molecular and ensure the table has data."
        res_mol = []
        for i in range(len(res_smi)):
            mol = Chem.MolFromSmiles(res_smi[i])
            res_mol.append(mol)
        print("res_mol:", len(res_mol))
        re = {}
        for i in range(len(res_smi)):
            times = int(time.time())
            sub_res_mol = [res_mol[i]]
            sub_img = Draw.MolsToGridImage(sub_res_mol,
                                           molsPerRow=1,
                                           subImgSize=(500, 500))
            sub_img.save(UPLOAD_PATH + "/similarities_results_" + str(ids[i]) +
                         "_" + str(times) + ".png")
            res_img = request.url_root + "data/similarities_results_" + str(
                ids[i]) + "_" + str(times) + ".png"
            re[res_img] = [res_smi[i], res_distance[i]]
        # img = Draw.MolsToGridImage(res_mol, molsPerRow=1, subImgSize=(500, 500),legends=["%s - %s" % (res_smi[x] , str(res_distance[x])) for x in range(len(res_mol))])
        return jsonify(re), 200
    return "not found", 400
예제 #8
0
def do_search_api():
    args = reqparse.RequestParser(). \
        add_argument("Table", type=str). \
        add_argument("Num", type=int, default=1). \
        parse_args()

    table_name = args['Table']
    if not table_name:
        table_name = DEFAULT_TABLE
    top_k = args['Num']
    file = request.files.get('file', "")
    if not file:
        return "no file data", 400
    if not file.name:
        return "need file name", 400
    if file:
        filename = secure_filename(file.filename)
        img_path = app.config['UPLOAD_FOLDER']+'/'+filename.split('.')[0]
        if not os.path.exists(img_path):
            os.mkdir(img_path)
        file_path = os.path.join(img_path, filename)
        file.save(file_path)
        res_id,res_distance = do_search(image_encoder,table_name, img_path, top_k)
        # print(res_id,res_distance)
        # if isinstance(res_id, str):
        #     return res_id
        res ={}
        for img, dis in zip(res_id,res_distance):
           # print("[[[[[[[[[[[[[[", img, dis)
            key_img = request.url_root +"data/" + img
            if key_img not in res.keys() or res[key_img] > dis:
                res[key_img] = dis
        #print("dic res:", res)
        # res = dict(zip(res_img,res_distance))

        #res = [list(g)[0] for k, g in groupby(sorted(res), key=itemgetter(0))]
       # print(",,,,,,,",res)
        res = sorted(res.items(),key=lambda item:item[1])
        # myslice = slice(top_k)  
        # res=res[myslice] 
        return jsonify(res), 200
    return "not found", 400
def do_search_api():
    file_img = request.files.get('img', "")
    file_video = request.files.get('video', None)
    file_audio = request.files.get('audio', None)
    ids = '{0:%Y%m%d%H%M%S%f}'.format(datetime.datetime.now())
    status = {'status': 'faile', 'message': 'no file data'}
    if file_video:
        filename = secure_filename(file_video.filename)
        file_path = os.path.join(app.config['DATA_FOLDER'], filename)
        file_video.save(file_path)
        video = VideoFileClip(file_path)
        audio = video.audio
        voc_path = os.path.join(app.config['DATA_FOLDER'], ids[:-1] + '.wav')
        audio.write_audiofile(voc_path)
    elif file_audio:
        voc_path = os.path.join(app.config['DATA_FOLDER'], ids[:-1] + '.wav')
        file_audio.save(voc_path)
    else:
        return jsonify(status), 200

    if file_img:
        img_path = os.path.join(app.config['DATA_FOLDER'], ids + '.png')
        file_img.save(img_path)
        try:
            status = do_search(img_path, voc_path)
            status[1] = request.url_root + "data/" + str(status[1]) + '.png'
        except:
            status = {
                'status': 'faile',
                'message': 'please confirm only one face in camera'
            }
            return jsonify(status), 200
        finally:
            os.remove(img_path)
            os.remove(voc_path)
            return "{}".format(status), 200
    else:
        return jsonify(status), 200
예제 #10
0
파일: app.py 프로젝트: yes-github/bootcamp
    if not captions:
        return "no captions", 400
    if captions:
        # filename = secure_filename(file.filename)
        # file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
        # file.save(file_path)
        res_id, res_distance = do_search(table_name, captions, top_k, model, args)
        if isinstance(res_id, str):
            return res_id
        # res_img = [request.url_root + "data/" + x for x in res_id]
        # res = dict(zip(res_img, res_distance))
        # res = sorted(res.items(), key=lambda item: item[1])
        # return jsonify(res), 200
    return "not found", 400

if __name__ == "__main__":
    global args
    global test_loader
    global test_transform
    args = config()
    test_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])
    test_loader = data_config(args.image_dir, args.anno_dir, 64, 'test', args.max_length, test_transform)
    load_model()
    # do_train('test02', test_loader, model, args)
    captions = 'The man is wearing a blue and white striped tank top and green pants. He has pink headphones around his neck.'
    do_search('test02', captions, 10, model, args)
    app.run(host="192.168.1.85", port='5001')