def init_res_fig(n_subplots, max_sess=None, modif=False): """ init_res_fig(n_subplots) Initializes a figure in which to plot summary results. Required args: - n_subplots (int): number of subplots Optional args: - max_sess (int): maximum number of sessions plotted default: None - modif (bool) : if True, plots are made in a modified (simplified way) default: False Returns: - fig (plt Fig): figure - ax (plt Axis): axis """ subplot_hei = 14 subplot_wid = 7.5 if max_sess is not None: subplot_wid *= max_sess/4.0 if modif: sess_plot_util.update_plt_linpla() figpar_init = sess_plot_util.fig_init_linpla(sharey=True)["init"] fig, ax = plot_util.init_fig(n_subplots, **figpar_init) else: fig, ax = plot_util.init_fig(n_subplots, 2, sharey=True, subplot_hei=subplot_hei, subplot_wid=subplot_wid) return fig, ax
def plot_ex_gabor_traces(ex_traces_df, stimpar, figpar, title=None): """ plot_ex_gabor_traces(ex_traces_df, stimpar, figpar) Plots example Gabor traces. Required args: - ex_traces_df (pd.DataFrame): dataframe with a row for each ROI, and the following columns, in addition to the basic sess_df columns: - time_values (list): values for each frame, in seconds - roi_ns (list): selected ROI number - traces_sm (list): selected ROI sequence traces, smoothed, with dims: seq x frames - trace_stat (list): selected ROI trace mean or median - stimpar (dict): dictionary with keys of StimPar namedtuple - figpar (dict): dictionary containing the following figure parameter dictionaries ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters Optional args: - title (str): plot title default: None Returns: - ax (2D array): array of subplots """ if stimpar["stimtype"] != "gabors": raise ValueError("Expected stimpar['stimtype'] to be 'gabors'.") group_columns = ["lines", "planes"] n_per = np.max( [len(lp_df) for _, lp_df in ex_traces_df.groupby(group_columns)] ) per_rows, per_cols = math_util.get_near_square_divisors(n_per) n_per = per_rows * per_cols figpar = sess_plot_util.fig_init_linpla( figpar, kind="traces", n_sub=per_rows ) figpar["init"]["subplot_hei"] = 1.36 figpar["init"]["subplot_wid"] = 2.47 figpar["init"]["ncols"] = per_cols * 2 fig, ax = plot_util.init_fig( plot_helper_fcts.N_LINPLA * n_per, **figpar["init"] ) if title is not None: fig.suptitle(title, y=1.03, weight="bold") ylims = np.full(ax.shape + (2, ), np.nan) logger.info("Plotting individual traces...", extra={"spacing": TAB}) raster_zorder = -12 for (line, plane), lp_df in ex_traces_df.groupby(["lines", "planes"]): li, pl, col, dash = plot_helper_fcts.get_line_plane_idxs(line, plane) for i, idx in enumerate(lp_df.index): row_idx = int(pl * per_rows + i % per_rows) col_idx = int(li * per_cols + i // per_rows) sub_ax = ax[row_idx, col_idx] ylims[row_idx, col_idx] = plot_ex_gabor_roi_traces( sub_ax, lp_df.loc[idx], col=col, dash=dash, zorder=raster_zorder - 1 ) time_values = np.asarray(lp_df.loc[lp_df.index[-1], "time_values"]) sess_plot_util.format_linpla_subaxes(ax, fluor="dff", area=False, datatype="roi", sess_ns=None, xticks=None, kind="traces", modif_share=False) # fix x ticks and lims for sub_ax in ax.reshape(-1): xlims = [time_values[0], time_values[-1]] xticks = np.linspace(*xlims, 6) sub_ax.set_xticks(xticks) plot_util.set_interm_ticks(ax, 3, axis="x", fontweight="bold", skip=False) for sub_ax in ax.reshape(-1): sub_ax.set_xlim(xlims) # reset y limits for r in range(ax.shape[0]): for c in range(ax.shape[1]): if not np.isfinite(ylims[r, c].sum()): continue ax[r, c].set_ylim(ylims[r, c]) plot_util.set_interm_ticks( ax, 2, axis="y", share=False, weight="bold", update_ticks=True ) # rasterize the gray lines logger.info("Rasterizing individual traces...", extra={"spacing": TAB}) for sub_ax in ax.reshape(-1): sub_ax.set_rasterization_zorder(raster_zorder) return ax
def plot_sess_data(data_df, analyspar, sesspar, permpar, figpar, between_sess_sig=True, data_col="diff_stats", decoder_data=False, title=None, wide=False): """ plot_sess_data(data_df, analyspar, sesspar, permpar, figpar) Plots errorbar data across sessions. Required args: - data_df (pd.DataFrame): dataframe with one row per session/line/plane, and the following columns, in addition to the basic sess_df columns: - {data_key} (list): data stats (me, err) - null_CIs (list): adjusted null CI for data - raw_p_vals (float): uncorrected p-value for data within sessions - p_vals (float): p-value for data within sessions, corrected for multiple comparisons and tails for session comparisons, e.g. 1v2: - raw_p_vals_{}v{} (float): uncorrected p-value for data differences between sessions - p_vals_{}v{} (float): p-value for data between sessions, corrected for multiple comparisons and tails - analyspar (dict): dictionary with keys of AnalysPar namedtuple - sesspar (dict): dictionary with keys of SessPar namedtuple - permpar (dict): dictionary with keys of PermPar namedtuple - figpar (dict): dictionary containing the following figure parameter dictionaries ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters Optional args: - between_sess_sig (bool): if True, significance between sessions is logged and plotted default: True - data_col (str): dataframe column in which data to plot is stored default: "diff_stats" - decoder_data (bool): if True, data plotted is decoder data default: False - title (str): plot title default: None - wide (bool): if True, subplots are wider default: False Returns: - ax (2D array): array of subplots """ sess_ns = misc_analys.get_sess_ns(sesspar, data_df) figpar = sess_plot_util.fig_init_linpla(figpar) sharey = True if decoder_data else "row" figpar["init"]["sharey"] = sharey figpar["init"]["subplot_hei"] = 4.4 figpar["init"]["gs"] = {"hspace": 0.2} if wide: figpar["init"]["subplot_wid"] = 3.0 figpar["init"]["gs"]["wspace"] = 0.3 else: figpar["init"]["subplot_wid"] = 2.6 figpar["init"]["gs"]["wspace"] = 0.3 fig, ax = plot_util.init_fig(plot_helper_fcts.N_LINPLA, **figpar["init"]) if title is not None: fig.suptitle(title, y=0.97, weight="bold") sensitivity = misc_analys.get_sensitivity(permpar) comp_info = misc_analys.get_comp_info(permpar) for pass_n in [0, 1]: # add significance markers on the second pass if pass_n == 1: logger.info(f"{comp_info}:", extra={"spacing": "\n"}) for (line, plane), lp_df in data_df.groupby(["lines", "planes"]): li, pl, col, dash = plot_helper_fcts.get_line_plane_idxs( line, plane ) line_plane_name = plot_helper_fcts.get_line_plane_name(line, plane) sub_ax = ax[pl, li] sess_indices = [] lp_sess_ns = [] for sess_n in sess_ns: rows = lp_df.loc[lp_df["sess_ns"] == sess_n] if len(rows) == 1: sess_indices.append(rows.index[0]) lp_sess_ns.append(sess_n) elif len(rows) > 1: raise RuntimeError("Expected 1 row per line/plane/session.") data = np.asarray([lp_df.loc[i, data_col] for i in sess_indices]) if pass_n == 0: # plot errorbars plot_util.plot_errorbars( sub_ax, data[:, 0], data[:, 1:].T, lp_sess_ns, color=col, alpha=0.8, xticks="auto", line_dash=dash ) if pass_n == 1: # plot CIs CIs = np.asarray( [lp_df.loc[i, "null_CIs"] for i in sess_indices] ) CI_meds = CIs[:, 1] CIs = CIs[:, np.asarray([0, 2])] plot_util.plot_CI(sub_ax, CIs.T, med=CI_meds, x=lp_sess_ns, width=0.45, color="lightgrey", med_col="gray", med_rat=0.03, zorder=-12) # add significance markers within sessions y_maxes = data[:, 0] + data[:, -1] sides = [ np.sign(sub[0] - CI_med) for sub, CI_med in zip(data, CI_meds) ] p_vals_corr = [lp_df.loc[i, "p_vals"] for i in sess_indices] lp_sig_str = f"{line_plane_name:6} (within session):" for s, sess_n in enumerate(lp_sess_ns): sig_str = misc_analys.get_sig_symbol( p_vals_corr[s], sensitivity=sensitivity, side=sides[s], tails=permpar["tails"], p_thresh=permpar["p_val"] ) if len(sig_str): plot_util.add_signif_mark(sub_ax, sess_n, y_maxes[s], rel_y=0.15, color=col, mark=sig_str) lp_sig_str = ( f"{lp_sig_str}{TAB} S{sess_n}: " f"{p_vals_corr[s]:.5f}{sig_str:3}" ) logger.info(lp_sig_str, extra={"spacing": TAB}) if between_sess_sig: add_between_sess_sig(ax, data_df, permpar, data_col=data_col) area, ylab = True, None if decoder_data: area = False if "balanced" in data_col: ylab = "Balanced accuracy (%)" else: ylab = "Accuracy %" sess_plot_util.format_linpla_subaxes(ax, fluor=analyspar["fluor"], area=area, ylab=ylab, datatype="roi", sess_ns=sess_ns, kind="reg", xticks=sess_ns, modif_share=False) return ax
def plot_sess_traces(data_df, analyspar, sesspar, figpar, trace_col="trace_stats", row_col="sess_ns", row_order=None, split="by_exp", title=None, size="reg"): """ plot_sess_traces(data_df, analyspar, sesspar, figpar) Plots traces from dataframe. Required args: - data_df (pd.DataFrame): traces data frame with, in addition to the basic sess_df columns, columns specified by trace_col, row_col, and a "time_values" column - analyspar (dict): dictionary with keys of AnalysPar namedtuple - sesspar (dict): dictionary with keys of SessPar namedtuple - figpar (dict): dictionary containing the following figure parameter dictionaries ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters Optional args: - trace_col (str): dataframe column containing trace statistics, as split x ROIs x frames x stats default: "trace_stats" - row_col (str): dataframe column specifying the variable that defines rows within each line/plane default: "sess_ns" - row_order (list): ordered list specifying the order in which to plot from row_col. If None, automatic sorting order is used. default: None - split (str): data split, e.g. "exp_lock", "unexp_lock", "stim_onset" or "stim_offset" default: False - title (str): plot title default: None - size (str): subplot sizes default: "reg" Returns: - ax (2D array): array of subplots """ # retrieve session numbers, and infer row_order, if necessary sess_ns = None if row_col == "sess_ns": sess_ns = row_order if row_order is None: row_order = misc_analys.get_sess_ns(sesspar, data_df) elif row_order is None: row_order = data_df[row_col].unique() figpar = sess_plot_util.fig_init_linpla( figpar, kind="traces", n_sub=len(row_order), sharey=False ) if size == "small": figpar["init"]["subplot_hei"] = 1.51 figpar["init"]["subplot_wid"] = 3.7 elif size == "wide": figpar["init"]["subplot_hei"] = 1.36 figpar["init"]["subplot_wid"] = 4.8 figpar["init"]["gs"] = {"wspace": 0.3, "hspace": 0.5} elif size == "reg": figpar["init"]["subplot_hei"] = 1.36 figpar["init"]["subplot_wid"] = 3.4 else: gen_util.accepted_values_error("size", size, ["small", "wide", "reg"]) fig, ax = plot_util.init_fig(len(row_order) * 4, **figpar["init"]) if title is not None: fig.suptitle(title, y=1.0, weight="bold") for (line, plane), lp_df in data_df.groupby(["lines", "planes"]): li, pl, col, dash = plot_helper_fcts.get_line_plane_idxs(line, plane) for r, row_val in enumerate(row_order): rows = lp_df.loc[lp_df[row_col] == row_val] if len(rows) == 0: continue elif len(rows) > 1: raise RuntimeError( "Expected row_order instances to be unique per line/plane." ) row = rows.loc[rows.index[0]] sub_ax = ax[r + pl * len(row_order), li] if line == "L2/3-Cux2": exp_col = "darkgray" # oddly, lighter than gray else: exp_col = "gray" plot_traces( sub_ax, row["time_values"], row[trace_col], split=split, col=col, ls=dash, exp_col=exp_col, lab=False ) for sub_ax in ax.reshape(-1): plot_util.set_minimal_ticks(sub_ax, axis="y") sess_plot_util.format_linpla_subaxes(ax, fluor=analyspar["fluor"], area=False, datatype="roi", sess_ns=sess_ns, xticks=None, kind="traces", modif_share=False) # fix x ticks and lims plot_util.set_interm_ticks(ax, 3, axis="x", fontweight="bold") xlims = [np.min(row["time_values"]), np.max(row["time_values"])] if split != "by_exp": xlims = [-xlims[1], xlims[1]] sub_ax.set_xlim(xlims) return ax
def plot_idx_corr_scatterplots(idx_corr_df, permpar, figpar, permute="sess", title=None): """ plot_idx_corr_scatterplots(idx_corr_df, permpar, figpar) Plots ROI USI index correlation scatterplots for individual session comparisons. Required args: - idx_corr_df (pd.DataFrame): dataframe with one row per line/plane, and the following columns, in addition to the basic sess_df columns: for correlation data (normalized if corr_type is "diff_corr") for session comparisons (x, y), e.g. 1v2 - binned_rand_stats (list): number of random correlation values per bin (xs x ys) - corr_data_xs (list): USI values for x - corr_data_ys (list): USI values for y - corrs (float): correlation between session data (x and y) - p_vals (float): p-value for correlation, corrected for multiple comparisons and tails - rand_corr_meds (float): median of the random correlations - raw_p_vals (float): p-value for intersession correlations - regr_coefs (float): regression correlation coefficient (slope) - regr_intercepts (float): regression correlation intercept - x_bin_mids (list): x mid point for each random correlation bin - y_bin_mids (list): y mid point for each random correlation bin - permpar (dict): dictionary with keys of PermPar namedtuple - figpar (dict): dictionary containing the following figure parameter dictionaries ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters Optional args: - permute (bool): type of permutation to due ("tracking", "sess" or "all") default: "sess" - title (str): plot title default: None Returns: - ax (2D array): array of subplots """ diffs = False if permute in ["sess", "all"]: diffs = True figpar = sess_plot_util.fig_init_linpla(figpar, kind="reg") figpar["init"]["sharex"] = False figpar["init"]["sharey"] = False figpar["init"]["subplot_hei"] = 4 figpar["init"]["subplot_wid"] = 4 figpar["init"]["gs"] = {"hspace": 0.4, "wspace": 0.4} fig, ax = plot_util.init_fig(4, **figpar["init"]) if title is not None: fig.suptitle(title, fontweight="bold", y=0.97) sess_ns = None # first pass to plot for (line, plane), lp_df in idx_corr_df.groupby(["lines", "planes"]): li, pl, col, _ = plot_helper_fcts.get_line_plane_idxs(line, plane) sub_ax = ax[pl, li] if len(lp_df) != 1: raise RuntimeError("Expected exactly one row.") lp_row = lp_df.loc[lp_df.index[0]] if sess_ns is None: sess_ns = lp_row["sess_ns"] xlabel = f"Session {sess_ns[0]} USIs" ylabel = f"Session {sess_ns[1]} USIs" if diffs: ylabel = f"Session {sess_ns[1]} - {sess_ns[0]} USIs" elif sess_ns != lp_row["sess_ns"]: raise RuntimeError("Expected all sess_ns to match.") density_data = [ lp_row["x_bin_mids"], lp_row["y_bin_mids"], np.asarray(lp_row["binned_rand_stats"]).T ] sub_ax.contour(*density_data, levels=6, cmap="Greys", zorder=-13, linewidths=4) alpha = 0.3**(len(lp_row["corr_data_xs"]) / 300) sub_ax.scatter(lp_row["corr_data_xs"], lp_row["corr_data_ys"], color=col, alpha=alpha, lw=2, s=35) # Add plane, line info to plots sess_plot_util.format_linpla_subaxes(ax, datatype="roi", xticks=None, ylab=ylabel, xlab=xlabel, kind="reg") # second pass to add plot markings comp_info = misc_analys.get_comp_info(permpar) logger.info(f"{comp_info}:", extra={"spacing": "\n"}) sig_str = "" for (line, plane), lp_df in idx_corr_df.groupby(["lines", "planes"]): li, pl, col, _ = plot_helper_fcts.get_line_plane_idxs(line, plane) line_plane_name = plot_helper_fcts.get_line_plane_name(line, plane) sub_ax = ax[pl, li] # add markers back in (removed due to kind='reg') sub_ax.tick_params(axis="x", which="both", bottom=True, top=False) sub_ax.spines["bottom"].set_visible(True) lp_row = lp_df.loc[lp_df.index[0]] p_val_corr = lp_row["p_vals"] lp_sig_str = add_scatterplot_markers(sub_ax, permpar, lp_row["corrs"], lp_row["rand_corr_meds"], lp_row["regr_coefs"], lp_row["regr_intercepts"], lp_row["p_vals"], col=col, diffs=diffs) sig_str = (f"{sig_str}{TAB}{line_plane_name}: " f"{p_val_corr:.5f}{lp_sig_str:3}") logger.info(sig_str, extra={"spacing": TAB}) return ax
def plot_idx_correlations(idx_corr_df, permpar, figpar, permute="sess", corr_type="corr", title=None, small=True): """ plot_idx_correlations(idx_corr_df, permpar, figpar) Plots ROI USI index correlations across sessions. Required args: - idx_corr_df (pd.DataFrame): dataframe with one row per line/plane, and the following columns, in addition to the basic sess_df columns: for session comparisons, e.g. 1v2 - {}v{}{norm_str}_corrs (float): intersession ROI index correlations - {}v{}{norm_str}_corr_stds (float): bootstrapped intersession ROI index correlation standard deviation - {}v{}_null_CIs (list): adjusted null CI for intersession ROI index correlations - {}v{}_raw_p_vals (float): p-value for intersession correlations - {}v{}_p_vals (float): p-value for intersession correlations, corrected for multiple comparisons and tails - permpar (dict): dictionary with keys of PermPar namedtuple - figpar (dict): dictionary containing the following figure parameter dictionaries ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters Optional args: - permute (bool): type of permutation to due ("tracking", "sess" or "all") default: "sess" - corr_type (str): type of correlation run, i.e. "corr" or "R_sqr" default: "corr" - title (str): plot title default: None - small (bool): if True, smaller subplots are plotted default: True Returns: - ax (2D array): array of subplots """ norm = False if permute in ["sess", "all"]: corr_type = f"diff_{corr_type}" if corr_type == "diff_corr": norm = True title = title.replace("Correlations", "Normalized correlations") norm_str = "_norm" if norm else "" sess_pairs = get_sorted_sess_pairs(idx_corr_df, norm=norm) n_pairs = int(np.ceil(len(sess_pairs) / 2) * 2) # multiple of 2 figpar = sess_plot_util.fig_init_linpla(figpar, kind="reg", n_sub=int(n_pairs / 2)) figpar["init"]["ncols"] = n_pairs figpar["init"]["sharey"] = "row" figpar["init"]["gs"] = {"hspace": 0.25} if small: figpar["init"]["subplot_wid"] = 2.7 figpar["init"]["subplot_hei"] = 4.21 figpar["init"]["gs"]["wspace"] = 0.2 else: figpar["init"]["subplot_wid"] = 3.3 figpar["init"]["subplot_hei"] = 4.71 figpar["init"]["gs"]["wspace"] = 0.3 fig, ax = plot_util.init_fig(n_pairs * 2, **figpar["init"]) if title is not None: fig.suptitle(title, y=0.98, weight="bold") plane_pts = get_idx_corr_ylims(idx_corr_df, norm=norm) lines = [None, None] comp_info = misc_analys.get_comp_info(permpar) logger.info(f"{comp_info}:", extra={"spacing": "\n"}) for (line, plane), lp_df in idx_corr_df.groupby(["lines", "planes"]): li, pl, col, _ = plot_helper_fcts.get_line_plane_idxs(line, plane) linpla_name = plot_helper_fcts.get_line_plane_name(line, plane) lines[li] = line.split("-")[0].replace("23", "2/3") if len(lp_df) != 1: raise RuntimeError("Expected only one row per line/plane.") row = lp_df.loc[lp_df.index[0]] lp_sig_str = f"{linpla_name:6}:" for s, sess_pair in enumerate(sess_pairs): sub_ax = ax[pl, s] if s == 0: sub_ax.set_ylim(plane_pts[pl]) col_base = f"{sess_pair[0]}v{sess_pair[1]}" CI = row[f"{col_base}_null_CIs"] extr = np.asarray([CI[0], CI[2]]) plot_util.plot_CI(sub_ax, extr, med=CI[1], x=li, width=0.45, med_rat=0.025) y = row[f"{col_base}{norm_str}_corrs"] err = row[f"{col_base}{norm_str}_corr_stds"] plot_util.plot_ufo(sub_ax, x=li, y=y, err=err, color=col, capsize=8) # add significance markers p_val = row[f"{col_base}_p_vals"] side = np.sign(y - CI[1]) sensitivity = misc_analys.get_sensitivity(permpar) sig_str = misc_analys.get_sig_symbol(p_val, sensitivity=sensitivity, side=side, tails=permpar["tails"], p_thresh=permpar["p_val"]) if len(sig_str): high = np.max([CI[-1], y + err]) plot_util.add_signif_mark(sub_ax, li, high, rel_y=0.1, color=col, fontsize=24, mark=sig_str) sess_str = f"S{sess_pair[0]}v{sess_pair[1]}: " lp_sig_str = f"{lp_sig_str}{TAB}{sess_str}{p_val:.5f}{sig_str:3}" logger.info(lp_sig_str, extra={"spacing": TAB}) # Add plane, line info to plots sess_plot_util.format_linpla_subaxes(ax, datatype="roi", lines=["", ""], xticks=[0, 1], ylab="", xlab="", kind="traces") xs = np.arange(len(lines)) pad_x = 0.6 * (xs[1] - xs[0]) for row_n in range(len(ax)): for col_n in range(len(ax[row_n])): sub_ax = ax[row_n, col_n] sub_ax.tick_params(axis="x", which="both", bottom=False) sub_ax.set_xticks(xs) sub_ax.set_xticklabels(lines, weight="bold") sub_ax.set_xlim([xs[0] - pad_x, xs[-1] + pad_x]) sub_ax.set_ylim(plane_pts[row_n]) sub_ax.set_yticks(plane_pts[row_n]) if row_n == 0: if col_n < len(sess_pairs): s1, s2 = sess_pairs[col_n] sess_pair_title = f"Session {s1} v {s2}" sub_ax.set_title(sess_pair_title, fontweight="bold", y=1.07) sub_ax.spines["bottom"].set_visible(True) plot_util.set_interm_ticks(ax[row_n], 3, axis="y", weight="bold", share=False, update_ticks=True) return ax
def plot_tracked_idx_stats(idx_stats_df, sesspar, figpar, permpar=None, absolute=True, between_sess_sig=True, by_mouse=False, bootstr_err=None, title=None, wide=False): """ plot_tracked_idx_stats(idx_stats_df, sesspar, figpar) Plots tracked ROI USI statistics. Required args: - idx_stats_df (pd.DataFrame): dataframe with one row per session, and the following columns, in addition to the basic sess_df columns: - roi_idxs (list): index statistics or - abs_roi_idxs (list): absolute index statistics - sesspar (dict): dictionary with keys of SessPar namedtuple - figpar (dict): dictionary containing the following figure parameter dictionaries ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters Optional args: - permpar (dict): dictionary with keys of PermPar namedtuple. Required if between_sess_sig is True. default: None - absolute (bool): if True, data statistics are on absolute ROI indices default: True - between_sess_sig (bool): if True, significance between sessions is logged and plotted default: True - by_mouse (bool): if True, plotting is done per mouse default: False - bootstr_err (bool): if True, error is bootstrapped standard deviation default: False - title (str): plot title default: None - wide (bool): if True, subplots are wider default: False Returns: - ax (2D array): array of subplots """ sess_ns = misc_analys.get_sess_ns(sesspar, idx_stats_df) figpar = sess_plot_util.fig_init_linpla(figpar) figpar["init"]["sharey"] = "row" figpar["init"]["subplot_hei"] = 4.1 figpar["init"]["subplot_wid"] = 2.6 figpar["init"]["gs"] = {"wspace": 0.25, "hspace": 0.2} if wide: figpar["init"]["subplot_wid"] = 3.3 fig, ax = plot_util.init_fig(plot_helper_fcts.N_LINPLA, **figpar["init"]) if title is not None: fig.suptitle(title, y=0.98, weight="bold") data_col = "roi_idx_stats" if absolute: data_col = f"abs_{data_col}" if data_col not in idx_stats_df.columns: raise KeyError(f"Expected to find {data_col} in idx_stats_df columns.") for (line, plane), lp_df in idx_stats_df.groupby(["lines", "planes"]): li, pl, col, dash = plot_helper_fcts.get_line_plane_idxs(line, plane) sub_ax = ax[pl, li] sub_ax.axhline( y=0, ls=plot_helper_fcts.HDASH, c="k", lw=3.0, alpha=0.5, zorder=-13 ) mouse_ns = ["any"] mouse_cols = [col] if by_mouse: mouse_ns = sorted(lp_df["mouse_ns"].unique()) mouse_cols = plot_util.get_hex_color_range( len(mouse_ns), col=col, interval=plot_helper_fcts.MOUSE_COL_INTERVAL ) for mouse_n, mouse_col in zip(mouse_ns, mouse_cols): sub_df = lp_df if by_mouse: sub_df = lp_df.loc[lp_df["mouse_ns"] == mouse_n] sess_indices = [] sub_sess_ns = [] for sess_n in sess_ns: rows = sub_df.loc[sub_df["sess_ns"] == sess_n] if len(rows) == 1: sess_indices.append(rows.index[0]) sub_sess_ns.append(sess_n) data = np.asarray([sub_df.loc[i, data_col] for i in sess_indices]) # plot errorbars alpha = 0.6 if by_mouse else 0.8 capsize = 8 if bootstr_err else None plot_util.plot_errorbars( sub_ax, data[:, 0], data[:, 1:].T, sub_sess_ns, color=mouse_col, alpha=alpha, xticks="auto", line_dash=dash, capsize=capsize, ) if between_sess_sig: if permpar is None: raise ValueError( "If 'between_sess_sig' is True, must provide permpar." ) if by_mouse: raise NotImplementedError( "Plotting between session statistical signifiance is not " "implemented if 'by_mouse' if True." ) seq_plots.add_between_sess_sig( ax, idx_stats_df, permpar, data_col=data_col ) # Add plane, line info to plots sess_plot_util.format_linpla_subaxes( ax, datatype="roi", xticks=sess_ns, ylab="", kind="reg" ) return ax
def plot_imaging_planes(imaging_plane_df, figpar, title=None): """ plot_imaging_planes(imaging_plane_df, figpar) Plots imaging planes. Required args: - imaging_plane_df (pd.DataFrame in dict format): dataframe with a row for each mouse, and the following columns, in addition to the basic sess_df columns: - "max_projections" (list): pixel intensities of maximum projection for the plane (hei x wid) - figpar (dict): dictionary containing the following figure parameter dictionaries ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters Optional args: - title (str): plot title default: None Returns: - ax (2D array): array of subplots """ figpar = sess_plot_util.fig_init_linpla(figpar) figpar["init"]["sharex"] = False figpar["init"]["sharey"] = False figpar["init"]["subplot_hei"] = 2.4 figpar["init"]["subplot_wid"] = 2.4 figpar["init"]["gs"] = {"wspace": 0.25, "hspace": 0.2} # MUST ADJUST if anything above changes [right, bottom, width, height] new_axis_coords = [0.91, 0.115, 0.15, 0.34] fig, ax = plot_util.init_fig(plot_helper_fcts.N_LINPLA, **figpar["init"]) sub_ax_scale = fig.add_axes(new_axis_coords) plot_util.remove_axis_marks(sub_ax_scale) sub_ax_scale.spines["left"].set_visible(True) if title is not None: fig.suptitle(title, y=1, weight="bold") hei_lens = [] raster_zorder = -12 for (line, plane), lp_mask_df in imaging_plane_df.groupby(["lines", "planes"]): li, pl, _, _ = plot_helper_fcts.get_line_plane_idxs(line, plane) sub_ax = ax[pl, li] if len(lp_mask_df) != 1: raise RuntimeError("Expected only one row per line/plane.") lp_row = lp_mask_df.loc[lp_mask_df.index[0]] # add projection imaging_plane = np.asarray(lp_row["max_projections"]) hei_lens.append(imaging_plane.shape[0]) add_imaging_plane(sub_ax, imaging_plane, alpha=0.98, zorder=raster_zorder - 1 ) # add scale marker hei_lens = np.unique(hei_lens) if len(hei_lens) != 1: raise NotImplementedError( "Adding scale bar not implemented if ROI mask image heights are " "different for different planes." ) add_scale_marker( sub_ax_scale, side_len=hei_lens[0], ori="vertical", quadrant=3, fontsize=16 ) logger.info("Rasterizing imaging plane images...", extra={"spacing": TAB}) for sub_ax in ax.reshape(-1): sub_ax.set_rasterization_zorder(raster_zorder) # Add plane, line info to plots sess_plot_util.format_linpla_subaxes(ax, ylab="", kind="map") for sub_ax in ax.reshape(-1): plot_util.remove_axis_marks(sub_ax) return ax
def plot_perc_sig_usis(perc_sig_df, analyspar, permpar, figpar, by_mouse=False, title=None): """ plot_perc_sig_usis(perc_sig_df, analyspar, figpar) Plots percentage of significant USIs. Required args: - perc_sig_df (pd.DataFrame): dataframe with one row per session/line/plane, and the following columns, in addition to the basic sess_df columns: for sig in ["lo", "hi"]: for low vs high ROI indices - perc_sig_{sig}_idxs (num): percent significant ROIs (0-100) - perc_sig_{sig}_idxs_stds (num): bootstrapped standard deviation over percent significant ROIs - perc_sig_{sig}_idxs_CIs (list): adjusted CI for percent sig. ROIs - perc_sig_{sig}_idxs_null_CIs (list): adjusted null CI for percent sig. ROIs - perc_sig_{sig}_idxs_raw_p_vals (num): uncorrected p-value for percent sig. ROIs - perc_sig_{sig}_idxs_p_vals (num): p-value for percent sig. ROIs, corrected for multiple comparisons and tails - analyspar (dict): dictionary with keys of AnalysPar namedtuple - permpar (dict): dictionary with keys of PermPar namedtuple - figpar (dict): dictionary containing the following figure parameter dictionaries ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters Optional args: - by_mouse (bool): if True, plotting is done per mouse default: False - title (str): plot title default: None Returns: - ax (2D array): array of subplots """ perc_sig_df = perc_sig_df.copy(deep=True) nanpol = None if analyspar["rem_bad"] else "omit" sess_ns = perc_sig_df["sess_ns"].unique() if len(sess_ns) != 1: raise NotImplementedError( "Plotting function implemented for 1 session only." ) figpar = sess_plot_util.fig_init_linpla(figpar, kind="idx", n_sub=1, sharex=True, sharey=True) figpar["init"]["sharey"] = True figpar["init"]["subplot_wid"] = 3.4 figpar["init"]["gs"] = {"wspace": 0.18} if by_mouse: figpar["init"]["subplot_hei"] = 8.4 else: figpar["init"]["subplot_hei"] = 3.5 fig, ax = plot_util.init_fig(2, **figpar["init"]) if title is not None: y = 0.98 if by_mouse else 1.07 fig.suptitle(title, y=y, weight="bold") tail_order = ["Low tail", "High tail"] tail_keys = ["lo", "hi"] chance = permpar["p_val"] / 2 * 100 ylims = get_perc_sig_ylims(perc_sig_df, high_pt_min=40) n_linpla = plot_helper_fcts.N_LINPLA comp_info = misc_analys.get_comp_info(permpar) logger.info(f"{comp_info}:", extra={"spacing": "\n"}) for t, (tail, key) in enumerate(zip(tail_order, tail_keys)): sub_ax = ax[0, t] sub_ax.set_title(tail, fontweight="bold") sub_ax.set_ylim(ylims) # replace bottom spine with line at 0 sub_ax.spines['bottom'].set_visible(False) sub_ax.axhline(y=0, c="k", lw=4.0) data_key = f"perc_sig_{key}_idxs" CIs = np.full((plot_helper_fcts.N_LINPLA, 2), np.nan) CI_meds = np.full(plot_helper_fcts.N_LINPLA, np.nan) tail_sig_str = f"{tail:9}:" linpla_names = [] for (line, plane), lp_df in perc_sig_df.groupby(["lines", "planes"]): li, pl, col, _ = plot_helper_fcts.get_line_plane_idxs(line, plane) x_index = 2 * li + pl linpla_name = plot_helper_fcts.get_line_plane_name(line, plane) linpla_names.append(linpla_name) if len(lp_df) == 0: continue elif len(lp_df) > 1 and not by_mouse: raise RuntimeError("Expected a single row per line/plane.") lp_df = lp_df.sort_values("mouse_ns") # sort by mouse df_indices = lp_df.index.tolist() if by_mouse: # plot means or medians per mouse mouse_data = lp_df[data_key].to_numpy() mouse_cols = plot_util.get_hex_color_range( len(lp_df), col=col, interval=plot_helper_fcts.MOUSE_COL_INTERVAL ) mouse_data_mean = math_util.mean_med( mouse_data, stats=analyspar["stats"], nanpol=nanpol ) CI_dummy = np.repeat(mouse_data_mean, 2) plot_util.plot_CI(sub_ax, CI_dummy, med=mouse_data_mean, x=x_index, width=0.6, med_col=col, med_rat=0.01) else: # collect confidence interval data row = lp_df.loc[df_indices[0]] mouse_cols = [col] CIs[x_index] = np.asarray(row[f"{data_key}_null_CIs"])[ np.asarray([0, 2]) ] CI_meds[x_index] = row[f"{data_key}_null_CIs"][1] if by_mouse: perc_p_vals = [] rel_y = 0.05 else: tail_sig_str = f"{tail_sig_str}{TAB}{linpla_name}: " rel_y = 0.1 for df_i, mouse_col in zip(df_indices, mouse_cols): # plot UFOs err = None no_line = True if not by_mouse: err = perc_sig_df.loc[df_i, f"{data_key}_stds"] no_line = False # indicate bootstrapped error with wider capsize plot_util.plot_ufo( sub_ax, x_index, perc_sig_df.loc[df_i, data_key], err, color=mouse_col, capsize=8, no_line=no_line ) # add significance markers p_val = perc_sig_df.loc[df_i, f"{data_key}_p_vals"] perc = perc_sig_df.loc[df_i, data_key] nrois = np.sum(perc_sig_df.loc[df_i, "nrois"]) side = np.sign(perc - chance) sensitivity = misc_analys.get_binom_sensitivity( nrois, null_perc=chance, side=side ) sig_str = misc_analys.get_sig_symbol( p_val, sensitivity=sensitivity, side=side, tails=permpar["tails"], p_thresh=permpar["p_val"] ) if len(sig_str): perc_high = perc + err if err is not None else perc plot_util.add_signif_mark(sub_ax, x_index, perc_high, rel_y=rel_y, color=mouse_col, fontsize=24, mark=sig_str) if by_mouse: perc_p_vals.append( (int(np.around(perc)), p_val, sig_str) ) else: tail_sig_str = ( f"{tail_sig_str}{p_val:.5f}{sig_str:3}" ) if by_mouse: # sort p-value logging by percentage value tail_sig_str = f"{tail_sig_str}\n\t{linpla_name:6}: " order = np.argsort([vals[0] for vals in perc_p_vals]) for i in order: perc, p_val, sig_str = perc_p_vals[i] perc_str = f"(~{perc}%)" tail_sig_str = ( f"{tail_sig_str}{TAB}{perc_str:6} " f"{p_val:.5f}{sig_str:3}" ) # add chance information if by_mouse: sub_ax.axhline( y=chance, ls=plot_helper_fcts.VDASH, c="k", lw=3.0, alpha=0.5, zorder=-12 ) else: plot_util.plot_CI(sub_ax, CIs.T, med=CI_meds, x=np.arange(n_linpla), width=0.45, med_rat=0.025, zorder=-12) logger.info(tail_sig_str, extra={"spacing": TAB}) for sub_ax in fig.axes: sub_ax.tick_params(axis="x", which="both", bottom=False) plot_util.set_ticks( sub_ax, min_tick=0, max_tick=n_linpla - 1, n=n_linpla, pad_p=0.2) sub_ax.set_xticklabels(linpla_names, rotation=90, weight="bold") ax[0, 0].set_ylabel("%", fontweight="bold") plot_util.set_interm_ticks(ax, 3, axis="y", weight="bold", share=True) # adjustment if tick interval is repeated in the negative if ax[0, 0].get_ylim()[0] < 0: ax[0, 0].set_ylim([ylims[0], ax[0, 0].get_ylim()[1]]) return ax
def plot_idxs(idx_df, sesspar, figpar, plot="items", density=True, n_bins=40, title=None, size="reg"): """ plot_idxs(idx_df, sesspar, figpar) Returns exact color for a specific line. Required args: - idx_df (pd.DataFrame): dataframe with indices for different line/plane combinations, and the following columns, in addition to the basic sess_df columns: - rand_idx_binned (list): bin counts for the random ROI indices - bin_edges (list): first and last bin edge - CI_edges (list): confidence interval limit values - CI_perc (list): confidence interval percentile limits if plot == "items": - roi_idx_binned (list): bin counts for the ROI indices if plot == "percs": - perc_idx_binned (list): bin counts for the ROI index percentiles optionally: - n_signif_lo (int): number of significant ROIs (low) - n_signif_hi (int): number of significant ROIs (high) - sesspar (dict): dictionary with keys of SessPar namedtuple - figpar (dict): dictionary containing the following figure parameter dictionaries ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters Optional args: - plot (str): type of data to plot ("items" or "percs") default: "items" - density (bool): if True, histograms are plotted as densities default: True - n_bins (int): number of bins to use in histograms default: 40 - title (str): plot title default: None - size (str): plot size ("reg", "small" or "tall") default: "reg" Returns: - ax (2D array): array of subplots """ if plot == "items": data_key = "roi_idx_binned" CI_key = "CI_edges" elif plot == "percs": data_key = "perc_idx_binned" CI_key = "CI_perc" else: gen_util.accepted_values_error("plot", plot, ["items", "percs"]) sess_ns = misc_analys.get_sess_ns(sesspar, idx_df) n_plots = len(sess_ns) * 4 figpar["init"]["sharey"] = "row" figpar = sess_plot_util.fig_init_linpla(figpar, kind="idx", n_sub=len(sess_ns), sharex=(plot == "percs")) y = 1 if size == "reg": subplot_hei = 3.2 subplot_wid = 5.5 elif size == "small": y = 1.04 subplot_hei = 2.40 subplot_wid = 3.75 figpar["init"]["gs"] = {"hspace": 0.25, "wspace": 0.30} elif size == "tall": y = 0.98 subplot_hei = 5.3 subplot_wid = 5.55 else: gen_util.accepted_values_error("size", size, ["reg", "small", "tall"]) figpar["init"]["subplot_hei"] = subplot_hei figpar["init"]["subplot_wid"] = subplot_wid figpar["init"]["sharey"] = "row" fig, ax = plot_util.init_fig(n_plots, **figpar["init"]) if title is not None: fig.suptitle(title, y=y, weight="bold") for (line, plane), lp_df in idx_df.groupby(["lines", "planes"]): li, pl, col, _ = plot_helper_fcts.get_line_plane_idxs(line, plane) for s, sess_n in enumerate(sess_ns): rows = lp_df.loc[lp_df["sess_ns"] == sess_n] if len(rows) == 0: continue elif len(rows) > 1: raise RuntimeError( "Expected sess_ns to be unique per line/plane." ) row = rows.loc[rows.index[0]] sub_ax = ax[s + pl * len(sess_ns), li] # get percentage significant label perc_label = None if "n_signif_lo" in row.keys() and "n_signif_hi" in row.keys(): n_sig_lo, n_sig_hi = row["n_signif_lo"], row["n_signif_hi"] nrois = np.sum(row["nrois"]) perc_signif = np.sum([n_sig_lo, n_sig_hi]) / nrois * 100 perc_label = (f"{perc_signif:.2f}% sig\n" f"({n_sig_lo}-/{n_sig_hi}+ of {nrois})") plot_stim_idx_hist( sub_ax, row[data_key], row[CI_key], n_bins=n_bins, rand_data=row["rand_idx_binned"], orig_edges=row["bin_edges"], plot=plot, col=col, density=density, perc_label=perc_label) if size == "small": sub_ax.legend(fontsize="small") # Add plane, line info to plots y_lab = "Density" if density else f"N ROIs" sess_plot_util.format_linpla_subaxes(ax, datatype="roi", ylab=y_lab, xticks=None, sess_ns=None, kind="idx", modif_share=False, xlab="Index", single_lab=True) # Add indices after setting formatting if plot == "percs": nticks = 5 xticks = [int(np.around(x, 0)) for x in np.linspace(0, 100, nticks)] for sub_ax in ax[-1]: sub_ax.set_xticks(xticks) sub_ax.set_xticklabels(xticks, weight="bold") elif plot == "items": nticks = 3 plot_util.set_interm_ticks( ax, nticks, axis="x", weight="bold", share=False, skip=False ) else: gen_util.accepted_values_error("plot", plot, ["items", "percs"]) return ax
def plot_snr_sigmeans_nrois(data_df, figpar, datatype="snrs", title="ROI SNRs"): """ plot_snr_sigmeans_nrois(data_df, figpar) Plots SNR, signal means or number of ROIs, depending on the case. Required args: - data_df (pd.DataFrame): dataframe with SNR, signal mean or number of ROIs data for each session, in addition to the basic sess_df columns - figpar (dict): dictionary containing the following figure parameter dictionaries ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters Optional args: - datatype (str): type of data to plot, also corresponding to column name default: "snrs" - title (str): plot title default: "ROI SNRs" Returns: - ax (2D array): array of subplots """ sess_ns = np.arange(data_df.sess_ns.min(), data_df.sess_ns.max() + 1) figpar = sess_plot_util.fig_init_linpla(figpar, kind="reg") figpar["init"]["sharey"] = "row" figpar["init"]["subplot_hei"] = 4.4 figpar["init"]["gs"] = {"wspace": 0.2, "hspace": 0.2} if datatype != "nrois": figpar["init"]["subplot_wid"] = 3.2 else: figpar["init"]["subplot_wid"] = 2.5 fig, ax = plot_util.init_fig(4, **figpar["init"]) if title is not None: fig.suptitle(title, y=0.97, weight="bold") for (line, plane), lp_df in data_df.groupby(["lines", "planes"]): li, pl, col, dash = plot_helper_fcts.get_line_plane_idxs(line, plane) sub_ax = ax[pl, li] if datatype == "snrs": sub_ax.axhline(y=1, ls=plot_helper_fcts.HDASH, c="k", lw=3.0, alpha=0.5) elif datatype == "signal_means": sub_ax.axhline(y=0, ls=plot_helper_fcts.HDASH, c="k", lw=3.0, alpha=0.5) elif datatype != "nrois": gen_util.accepted_values_error("datatype", datatype, ["snrs", "signal_means", "nrois"]) if datatype == "nrois": plot_nrois(sub_ax, lp_df, sess_ns=sess_ns, col=col, dash=dash) continue data = [] use_sess_ns = [] for sess_n in sess_ns: rows = lp_df.loc[lp_df["sess_ns"] == sess_n] if len(rows) > 0: use_sess_ns.append(sess_n) data.append(np.concatenate(rows[datatype].tolist())) sub_ax.boxplot(data, positions=use_sess_ns, notch=True, patch_artist=True, whis=[5, 95], widths=0.6, boxprops=dict(facecolor="white", color=col, linewidth=3.0), capprops=dict(color=col, linewidth=3.0), whiskerprops=dict(color=col, linewidth=3.0), flierprops=dict(color=col, markeredgecolor=col, markersize=8), medianprops=dict(color=col, linewidth=3.0)) sess_plot_util.format_linpla_subaxes(ax, datatype="roi", ylab="", xticks=sess_ns, kind="reg", single_lab=True) return ax
def plot_roi_correlations(corr_df, figpar, title=None, log_scale=True): """ plot_roi_correlations(corr_df, figpar) Plots correlation histograms. Required args: - corr_df (pd.DataFrame): dataframe with one row per session/line/plane, and the following columns, in addition to the basic sess_df columns: - bin_edges (list): first and last bin edge - corrs_binned (list): number of correlation values per bin - figpar (dict): dictionary containing the following figure parameter dictionaries ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters Optional args: - title (str): plot title default: None - log_scale (bool): if True, a near logarithmic scale is used for the y axis (with a linear range to reach 0, and break marks to mark the transition from linear to log range) default: True Returns: - ax (2D array): array of subplots """ sess_ns = np.arange(corr_df.sess_ns.min(), corr_df.sess_ns.max() + 1) n_sess = len(sess_ns) figpar = sess_plot_util.fig_init_linpla(figpar, kind="prog", n_sub=len(sess_ns)) figpar["init"]["subplot_hei"] = 3.0 figpar["init"]["subplot_wid"] = 2.8 figpar["init"]["sharex"] = log_scale if log_scale: figpar["init"]["sharey"] = True fig, ax = plot_util.init_fig(4 * len(sess_ns), **figpar["init"]) if title is not None: fig.suptitle(title, y=1.02, weight="bold") sess_plot_util.format_linpla_subaxes(ax, datatype="roi", ylab="Density", xlab="Correlation", sess_ns=sess_ns, kind="prog", single_lab=True) log_base = 2 for (line, plane), lp_df in corr_df.groupby(["lines", "planes"]): li, pl, col, _ = plot_helper_fcts.get_line_plane_idxs(line, plane) for s, sess_n in enumerate(sess_ns): sess_rows = lp_df.loc[lp_df["sess_ns"] == sess_n] if len(sess_rows) == 0: continue elif len(sess_rows) > 1: raise RuntimeError("Expected exactly one row.") sess_row = sess_rows.loc[sess_rows.index[0]] sub_ax = ax[pl, s + li * n_sess] weights = np.asarray(sess_row["corrs_binned"]) bin_edges = np.linspace(*sess_row["bin_edges"], len(weights) + 1) sub_ax.hist(bin_edges[:-1], bin_edges, weights=weights, color=col, alpha=0.6, density=True) sub_ax.axvline(0, ls=plot_helper_fcts.VDASH, c="k", lw=3.0, alpha=0.5) sub_ax.spines["bottom"].set_visible(True) sub_ax.tick_params(axis="x", which="both", bottom=True, top=False) if log_scale: sub_ax.set_yscale("log", base=log_base) sub_ax.set_xlim(-1, 1) else: sub_ax.autoscale(axis="x", tight=True) sub_ax.autoscale(axis="y", tight=True) if log_scale: # update x ticks set_symlog_scale(ax, log_base=log_base, col_per_grp=n_sess, n_ticks=4) else: # update x and y ticks for i in range(ax.shape[0]): for j in range(int(ax.shape[1] / n_sess)): sub_axes = ax[i, j * n_sess:(j + 1) * n_sess] plot_util.set_interm_ticks(sub_axes, 4, axis="y", share=True, update_ticks=True) plot_util.set_interm_ticks(ax, 4, axis="x", share=log_scale, update_ticks=True, fontweight="bold") return ax
def plot_roi_masks_overlayed(roi_mask_df, figpar, title=None): """ plot_roi_masks_overlayed(roi_mask_df, figpar) Plots ROI masks overlayed across sessions, optionally cropped. Required args: - roi_mask_df (pd.DataFrame in dict format): dataframe with a row for each mouse, and the following columns, in addition to the basic sess_df columns: - "registered_roi_mask_idxs" (list): list of mask indices, registered across sessions, for each session (flattened across ROIs) ((sess, hei, wid) x val) - "roi_mask_shapes" (list): shape into which ROI mask indices index (sess x hei x wid) and optionally, if cropping: - "crop_fact" (num): factor by which to crop masks (> 1) - "shift_prop_hei" (float): proportion by which to shift cropped mask center vertically from left edge [0, 1] - "shift_prop_wid" (float): proportion by which to shift cropped mask center horizontally from left edge [0, 1] - figpar (dict): dictionary containing the following figure parameter dictionaries ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters Optional args: - title (str): plot title default: None Returns: - ax (2D array): array of subplots """ crop = "crop_fact" in roi_mask_df.columns figpar = sess_plot_util.fig_init_linpla(figpar) figpar["init"]["sharex"] = False figpar["init"]["sharey"] = False figpar["init"]["subplot_hei"] = 5.2 figpar["init"]["subplot_wid"] = 5.2 figpar["init"]["gs"] = {"wspace": 0.03, "hspace": 0.32} # MUST ADJUST if anything above changes [right, bottom, width, height] new_axis_coords = [0.885, 0.11, 0.1, 0.33] if crop: # move to the left new_axis_coords[0] = 0.04 fig, ax = plot_util.init_fig(plot_helper_fcts.N_LINPLA, **figpar["init"]) sub_ax_scale = fig.add_axes(new_axis_coords) plot_util.remove_axis_marks(sub_ax_scale) sub_ax_scale.spines["left"].set_visible(True) if title is not None: fig.suptitle(title, y=0.95, weight="bold") sess_cols = get_sess_cols(roi_mask_df) alpha = 0.6 hei_lens = [] for (line, plane), lp_mask_df in roi_mask_df.groupby(["lines", "planes"]): li, pl, _, _ = plot_helper_fcts.get_line_plane_idxs(line, plane) sub_ax = ax[pl, li] if len(lp_mask_df) != 1: raise RuntimeError("Expected only one row per line/plane.") lp_row = lp_mask_df.loc[lp_mask_df.index[0]] roi_masks = create_sess_roi_masks(lp_row, crop=crop) hei_lens.append(roi_masks.shape[1]) for s, sess_n in enumerate(lp_row["sess_ns"]): col = sess_cols[int(sess_n)] add_roi_mask(sub_ax, roi_masks[s], col=col, alpha=alpha) # add legend add_sess_col_leg( ax[0, 1], sess_cols, bbox_to_anchor=(0.7, -0.01), alpha=alpha ) # add scale marker hei_lens = np.unique(hei_lens) if len(hei_lens) != 1: raise NotImplementedError( "Adding scale bar not implemented if ROI mask image heights are " "different for different planes." ) quadrant = 1 if crop else 3 add_scale_marker( sub_ax_scale, side_len=hei_lens[0], ori="vertical", quadrant=quadrant, fontsize=22 ) # Add plane, line info to plots sess_plot_util.format_linpla_subaxes(ax, ylab="", kind="map") return ax
def plot_roi_masks_overlayed_with_proj(roi_mask_df, figpar, title=None): """ plot_roi_masks_overlayed_with_proj(roi_mask_df, figpar) Plots ROI mask contours overlayed over imaging planes, and ROI masks overlayed over each other across sessions. Required args: - roi_mask_df (pd.DataFrame in dict format): dataframe with a row for each mouse, and the following columns, in addition to the basic sess_df columns: - "max_projections" (list): pixel intensities of maximum projection for the plane (hei x wid) - "registered_roi_mask_idxs" (list): list of mask indices, registered across sessions, for each session (flattened across ROIs) ((sess, hei, wid) x val) - "roi_mask_idxs" (list): list of mask indices for each session, and each ROI (sess x (ROI, hei, wid) x val) (not registered) - "roi_mask_shapes" (list): shape into which ROI mask indices index (sess x hei x wid) - "crop_fact" (num): factor by which to crop masks (> 1) - "shift_prop_hei" (float): proportion by which to shift cropped mask center vertically from left edge [0, 1] - "shift_prop_wid" (float): proportion by which to shift cropped mask center horizontally from left edge [0, 1] - figpar (dict): dictionary containing the following figure parameter dictionaries ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters Optional args: - title (str): plot title default: None Returns: - ax (2D array): array of subplots """ n_lines = len(roi_mask_df["lines"].unique()) n_planes = len(roi_mask_df["planes"].unique()) sess_cols = get_sess_cols(roi_mask_df) n_sess = len(sess_cols) n_cols = n_sess * n_lines figpar = sess_plot_util.fig_init_linpla(figpar) figpar["init"]["sharex"] = False figpar["init"]["sharey"] = False figpar["init"]["subplot_hei"] = 2.3 figpar["init"]["subplot_wid"] = 2.3 figpar["init"]["gs"] = {"wspace": 0.2, "hspace": 0.2} figpar["init"]["ncols"] = n_cols fig, ax = plot_util.init_fig(n_cols * n_planes * 2, **figpar["init"]) if title is not None: fig.suptitle(title, y=0.93, weight="bold") crop = "crop_fact" in roi_mask_df.columns sess_cols = get_sess_cols(roi_mask_df) alpha = 0.6 raster_zorder = -12 for (line, plane), lp_mask_df in roi_mask_df.groupby(["lines", "planes"]): li, pl, _, _ = plot_helper_fcts.get_line_plane_idxs(line, plane) lp_col = plot_helper_fcts.get_line_plane_idxs(line, plane)[2] lp_name = plot_helper_fcts.get_line_plane_name(line, plane) if len(lp_mask_df) != 1: raise RuntimeError("Expected only one row per line/plane.") lp_row = lp_mask_df.loc[lp_mask_df.index[0]] # identify subplots base_row = (pl % n_planes) * n_planes base_col = (li % n_lines) * n_lines ax_grp = ax[base_row : base_row + 2, base_col : base_col + n_sess + 1] # add imaging planes and masks imaging_planes = add_proj_and_roi_masks( ax_grp, lp_row, sess_cols, crop=crop, alpha=alpha, proj_zorder=raster_zorder - 1 ) # add markings shared_row = base_row + 1 shared_col = base_col + int((n_sess - 1) // 2) shared_sub_ax = ax[shared_row, shared_col] if shared_col == 0: shared_sub_ax.set_ylabel(lp_name, fontweight="bold", color=lp_col) else: lp_sub_ax = ax[shared_row, 0] lp_sub_ax.set_xlim([0, 1]) lp_sub_ax.set_ylim([0, 1]) lp_sub_ax.text( 0.5, 0.5, lp_name, fontweight="bold", color=lp_col, ha="center", va="center", fontsize="x-large" ) # add scale bar if n_sess < 2: raise NotImplementedError( "Scale bar placement not implemented for fewer than 2 " "sessions." ) scale_ax = ax[shared_row, -1] wid_len = imaging_planes[0].shape[-1] add_scale_marker( scale_ax, side_len=wid_len, ori="horizontal", quadrant=1, fontsize=20 ) logger.info("Rasterizing imaging plane images...", extra={"spacing": TAB}) for i in range(ax.shape[0]): for j in range(ax.shape[1]): sub_ax = ax[i, j] plot_util.remove_axis_marks(sub_ax) if not(i % 2): sub_ax.set_rasterization_zorder(raster_zorder) # add legend if n_sess < 2: raise NotImplementedError( "Legend placement not implemented for fewer than 2 sessions." ) add_sess_col_leg( ax[-1, -1], sess_cols, bbox_to_anchor=(1, 0.6), alpha=alpha, fontsize="small" ) return ax
def plot_rel_resp_data(rel_resp_df, analyspar, sesspar, stimpar, permpar, figpar, title=None, small=True): """ plot_rel_resp_data((rel_resp_df, analyspar, sesspar, stimpar, permpar, figpar) Plots relative response errorbar data across sessions. Required args: - rel_resp_df (pd.DataFrame): dataframe with one row per session/line/plane, and the following columns, in addition to the basic sess_df columns: - rel_reg or rel_exp (list): data stats for regular or expected data (me, err) - rel_unexp (list): data stats for unexpected data (me, err) for reg/exp/unexp data types, session comparisons, e.g. 1v2: - {data_type}_raw_p_vals_{}v{} (float): uncorrected p-value for data differences between sessions - {data_type}_p_vals_{}v{} (float): p-value for data between sessions, corrected for multiple comparisons and tails - analyspar (dict): dictionary with keys of AnalysPar namedtuple - sesspar (dict): dictionary with keys of SessPar namedtuple - stimpar (dict): dictionary with keys of StimPar namedtuple - permpar (dict): dictionary with keys of PermPar namedtuple - figpar (dict): dictionary containing the following figure parameter dictionaries ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters Optional args: - title (str): plot title default: None - small (bool): if True, subplots are smaller default: False Returns: - ax (2D array): array of subplots """ sess_ns = misc_analys.get_sess_ns(sesspar, rel_resp_df) figpar = sess_plot_util.fig_init_linpla(figpar) figpar["init"]["sharey"] = "row" if small: figpar["init"]["subplot_hei"] = 4.1 figpar["init"]["subplot_wid"] = 2.6 figpar["init"]["gs"] = {"hspace": 0.2, "wspace": 0.25} figpar["init"]["gs"]["wspace"] = 0.25 else: figpar["init"]["subplot_hei"] = 4.4 figpar["init"]["subplot_wid"] = 3.0 figpar["init"]["gs"] = {"wspace": 0.3} fig, ax = plot_util.init_fig(plot_helper_fcts.N_LINPLA, **figpar["init"]) if title is not None: fig.suptitle(title, y=0.98, weight="bold") if stimpar["stimtype"] == "gabors": data_types = ["rel_reg", "rel_unexp"] elif stimpar["stimtype"] == "visflow": data_types = ["rel_exp", "rel_unexp"] else: gen_util.accepted_values_error( "stimpar['stimtype']", stimpar["stimtype"], ["gabors", "visflow"] ) for (line, plane), lp_df in rel_resp_df.groupby(["lines", "planes"]): li, pl, col, dash = plot_helper_fcts.get_line_plane_idxs(line, plane) sub_ax = ax[pl, li] sess_indices = [] lp_sess_ns = [] for sess_n in sess_ns: rows = lp_df.loc[lp_df["sess_ns"] == sess_n] if len(rows) == 1: sess_indices.append(rows.index[0]) lp_sess_ns.append(sess_n) elif len(rows) > 1: raise RuntimeError("Expected 1 row per line/plane/session.") sub_ax.axhline( y=1, ls=plot_helper_fcts.HDASH, c="k", lw=3.0, alpha=0.5, zorder=-13 ) colors = ["gray", col] fmts = ["-d", "-o"] alphas = [0.6, 0.8] ms = [12, None] for d, data_type in enumerate(data_types): data = np.asarray([lp_df.loc[i, data_type] for i in sess_indices]) plot_util.plot_errorbars( sub_ax, data[:, 0], data[:, 1:].T, lp_sess_ns, color=colors[d], alpha=alphas[d], ms=ms[d], fmt=fmts[d], line_dash=dash) highest = None for dry_run in [True, False]: # to get correct data heights for data_type in data_types: ctrl = ("unexp" not in data_type) highest = add_between_sess_sig( ax, rel_resp_df, permpar, data_col=data_type, highest=highest, ctrl=ctrl, p_val_prefix=True, dry_run=dry_run) if not dry_run: highest = [val * 1.05 for val in highest] # increment a bit sess_plot_util.format_linpla_subaxes(ax, fluor=analyspar["fluor"], datatype="roi", sess_ns=sess_ns, kind="reg", xticks=sess_ns, modif_share=False) return ax
def plot_stim_data_df(stim_data_df, stimpar, permpar, figpar, pop_stats=True, title=None): """ plot_stim_data_df(stim_data_df, stimpar, permpar, figpar) Plots stimulus comparison data. Required args: - stim_stats_df (pd.DataFrame): dataframe with one row per line/plane and one for all line/planes together, and the basic sess_df columns, in addition to, for each stimtype: - stimtype (list): absolute fractional change statistics (me, err) - raw_p_vals (float): uncorrected p-value for data differences between stimulus types - p_vals (float): p-value for data differences between stimulus types, corrected for multiple comparisons and tails - stimpar (dict): dictionary with keys of StimPar namedtuple - permpar (dict): dictionary with keys of PermPar namedtuple - figpar (dict): dictionary containing the following figure parameter dictionaries ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters Optional args: - pop_stats (bool): if True, analyses are run on population statistics, and not individual tracked ROIs default: True - title (str): plot title default: None Returns: - ax (2D array): array of subplots (does not include added subplot for all line/plane data together) """ figpar = sess_plot_util.fig_init_linpla(figpar, kind="reg") figpar["init"]["subplot_wid"] = 2.1 figpar["init"]["subplot_hei"] = 4.2 figpar["init"]["gs"] = {"hspace": 0.20, "wspace": 0.3} figpar["init"]["sharey"] = "row" fig, ax = plot_util.init_fig(plot_helper_fcts.N_LINPLA, **figpar["init"]) fig.suptitle(title, y=0.98, weight="bold") sub_ax_all = fig.add_axes([1.05, 0.11, 0.3, 0.77]) stimtypes = stimpar["stimtype"][:] # deep copy # indicate bootstrapped error with wider capsize capsize = 8 if pop_stats else 6 lp_data = [] cols = [] for (line, plane), lp_df in stim_data_df.groupby(["lines", "planes"]): x = [0, 1] data = np.vstack( [lp_df[stimtypes[0]].tolist(), lp_df[stimtypes[1]].tolist()] ).T y = data[0] err = data[1:] if line != "all" and plane != "all": li, pl, col, dash = plot_helper_fcts.get_line_plane_idxs( line, plane ) alpha = 0.5 sub_ax = ax[pl, li] lp_data.append(y) cols.append(col) else: col = plot_helper_fcts.NEARBLACK dash = None alpha = 0.2 sub_ax = sub_ax_all sub_ax.set_title("all", fontweight="bold") plot_util.plot_bars( sub_ax, x, y=y, err=err, width=0.5, lw=None, alpha=alpha, color=col, ls=dash, capsize=capsize ) # add dots to the all subplot x_vals = np.asarray([-0.17, 0.25, -0.25, 0.17]) # to spread dots out lw = 4 ms = 200 for s, _ in enumerate(stimtypes): lp_stim_data = [data[s] for data in lp_data] sorter = np.argsort(lp_stim_data) for i, idx in enumerate(sorter): x_val = s + x_vals[i] # white behind sub_ax_all.scatter( x=x_val, y=lp_stim_data[idx], s=ms, linewidth=lw, alpha=0.8, color="white", zorder=10 ) # colored dots sub_ax_all.scatter( x=x_val, y=lp_stim_data[idx], s=ms, alpha=0.6, linewidth=0, color=cols[idx], zorder=11 ) # dot borders sub_ax_all.scatter( x=x_val, y=lp_stim_data[idx], s=ms, color="None", edgecolor=cols[idx], linewidth=lw, alpha=1, zorder=12 ) # add between stim significance add_between_stim_sig(ax, sub_ax_all, stim_data_df, permpar) # add plane, line info to plots sess_plot_util.format_linpla_subaxes(ax, datatype="roi", lines=None, planes=["", ""], xticks=[0, 1], ylab="Absolute fractional change", kind="reg", xlab="" ) # adjust plot details stimtype_names = stimtypes[:] stimtype_names[stimtypes.index("visflow")] = "visual\nflow" for sub_ax in fig.axes: y_max = sub_ax.get_ylim()[1] sub_ax.set_ylim([0, y_max]) sub_ax.set_xticks([0, 1]) sub_ax.set_xticklabels( stimtypes, weight="bold", rotation=45, ha="right" ) sub_ax.tick_params(axis="x", bottom=False) sub_ax_all.set_xlim(ax[0, 0].get_xlim()) plot_util.set_interm_ticks( np.asarray(sub_ax_all), 4, axis="y", share=False, weight="bold" ) return ax
def plot_tracked_idxs(idx_only_df, sesspar, figpar, title=None, wide=False): """ plot_tracked_idxs(idx_only_df, sesspar, figpar) Plots tracked ROI USIs as individual lines. Required args: - idx_only_df (pd.DataFrame): dataframe with one row per (mouse/)session/line/plane, and the following columns, in addition to the basic sess_df columns: - roi_idxs (list): index for each ROI - sesspar (dict): dictionary with keys of SessPar namedtuple - figpar (dict): dictionary containing the following figure parameter dictionaries ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters Optional args: - title (str): plot title default: None - wide (bool): if True, subplots are wider default: False Returns: - ax (2D array): array of subplots """ sess_ns = misc_analys.get_sess_ns(sesspar, idx_only_df) figpar = sess_plot_util.fig_init_linpla(figpar) figpar["init"]["sharey"] = "row" figpar["init"]["subplot_hei"] = 4.1 figpar["init"]["subplot_wid"] = 2.5 figpar["init"]["gs"] = {"wspace": 0.25, "hspace": 0.2} if wide: figpar["init"]["subplot_wid"] = 3.3 figpar["init"]["gs"]["wspace"] = 0.25 fig, ax = plot_util.init_fig(plot_helper_fcts.N_LINPLA, **figpar["init"]) if title is not None: fig.suptitle(title, y=0.98, weight="bold") for (line, plane), lp_df in idx_only_df.groupby(["lines", "planes"]): li, pl, col, _ = plot_helper_fcts.get_line_plane_idxs(line, plane) sub_ax = ax[pl, li] # mouse_ns lp_mouse_ns = sorted(lp_df["mouse_ns"].unique()) lp_data = [] for mouse_n in lp_mouse_ns: mouse_df = lp_df.loc[lp_df["mouse_ns"] == mouse_n] nrois = mouse_df["nrois"].unique() if len(nrois) != 1: raise RuntimeError( "Each mouse in idx_stats_df should retain the same number " " of ROIs across sessions.") mouse_data = np.full((len(sess_ns), nrois[0]), np.nan) for s, sess_n in enumerate(sess_ns): rows = mouse_df.loc[mouse_df["sess_ns"] == sess_n] if len(rows) == 1: mouse_data[s] = rows.loc[rows.index[0], "roi_idxs"] elif len(rows) > 1: raise RuntimeError( "Expected 1 row per line/plane/session/mouse." ) lp_data.append(mouse_data) lp_data = np.concatenate(lp_data, axis=1) sub_ax.axhline( y=0, ls=plot_helper_fcts.HDASH, c="k", lw=3.0, alpha=0.5, zorder=-13 ) sub_ax.plot(sess_ns, lp_data, color=col, lw=2, alpha=0.3) # Add plane, line info to plots sess_plot_util.format_linpla_subaxes( ax, datatype="roi", xticks=sess_ns, ylab="", kind="reg" ) for sub_ax in ax.reshape(-1): xticks = sub_ax.get_xticks() plot_util.set_ticks( sub_ax, "x", np.min(xticks), np.max(xticks), n=len(xticks), pad_p=0.2 ) return ax