import os import numpy as np import matplotlib import matplotlib.pyplot as plt from PIL import Image import preproc as p import settings as s paths = s.paths() rootdir = '/home/anverdie/Documents/Code/Dimmy/to_convert' for f in os.listdir(rootdir): if not os.path.isdir(os.path.join(rootdir, f)): l = np.load(os.path.join(rootdir, f)).reshape(10, 10) l = np.repeat(l, 30, axis=0) l = np.repeat(l, 30, axis=1) pad = np.zeros((90, 300)) l = np.concatenate((pad, l, pad)).T if not os.path.exists(os.path.join(paths.path2OutputD, 'DLP')): os.makedirs(os.path.join(paths.path2OutputD, 'DLP')) np.save( os.path.join(paths.path2OutputD, 'DLP', '{}_dlp.npy'.format(f[:-4])), l) matplotlib.image.imsave(os.path.join(paths.path2OutputD, 'DLP', '{}_dlp.bmp'.format(f[:-4])), 1 - l,
import os import math import scipy import numpy as np import matplotlib.pyplot as plt from scipy import signal from skimage.measure import block_reduce from sklearn.preprocessing import normalize import settings as sett paths = sett.paths() params = sett.parameters() def fast_fourier(sample, samplerate): """ Compute a Fast Fourier Transform for visualization purposes Parameters ---------- sample : array Array containaing the raw signal samplerate : int Number of sample in the signal per unit of time Returns ------- array Fast-Fourier Transform of the signal