예제 #1
0
from keras.initializers import Constant
import nibabel as nib
from scipy import ndimage
from sklearn.model_selection import KFold
import skimage.transform
import tensorflow as tf
import matplotlib as mptlib
#mptlib.use('TkAgg')
import matplotlib.pyplot as plt

import settings

from settings import process_options, perform_setup
(options, args) = process_options()

IMG_DTYPE, SEG_DTYPE, _globalnpfile, _globalexpectedpixel, _nx, _ny = perform_setup(
    options)
print('database file: %s ' % settings._globalnpfile)

from setupmodel import GetDataDictionary, BuildDB
from trainmodel import TrainModel
from predictmodel import PredictModel
from kfolds import OneKfold, Kfold

if options.builddb:
    BuildDB()
if options.kfolds > 1:
    if options.idfold > -1:
        databaseinfo = GetDataDictionary(options.dbfile)
        OneKfold(i=options.idfold, datadict=databaseinfo)
    else:
        Kfold()
예제 #2
0
import numpy as np
import csv
import sys
import os

import settings
from settings import process_options, perform_setup
(options, args) = process_options()

IMG_DTYPE, SEG_DTYPE, _nx, _ny = perform_setup(options)

# from setupmodel import GetDataDictionary, BuildDB
from trainmodel import TrainModel
from predictmodel import PredictCSV, PredictNifti
from kfolds import OneKfold, Kfold
from generator import *

if ((not options.trainmodel) and (not options.predictmodel)):
    print("parser error")
    quit()

if options.trainmodel:
    if options.liver:
        if not options.datafiles_liver:
            print('no list of liver .npy files given for training')
            quit()
        else:
            saveloclist = options.datafiles_liver
    elif options.tumor:
        if not options.datafiles_tumor:
            print('no list of tumor .npy files given for training')