def __init__(self, *args, **kwargs): super(TestRecursive, self).__init__(*args, **kwargs) self.input_dim = 2 self.state_dim = 2 self.model = Recursive(return_sequences=True) self.model.add_input('input', ndim=3) # Input is 3D tensor self.model.add_state('h', dim=self.state_dim) self.model.add_node(Dense(self.input_dim + self.state_dim, self.state_dim, init='one'), name='rec', inputs=['input', 'h'], return_state='h') self.model.add_node(Activation('linear'), name='out', input='rec', create_output=True) self.model2 = Sequential() self.model2.add( SimpleRNN(input_dim=self.input_dim, activation='linear', inner_init='one', output_dim=self.state_dim, init='one', return_sequences=True))
def __init__(self, *args, **kwargs): super(TestOrthoRNN, self).__init__(*args, **kwargs) self.input_dim = 2 self.state_dim = 2 self.model = Recursive(return_sequences=True) self.model.add_input('input', ndim=3) # Input is 3D tensor self.model.add_state('h', dim=self.state_dim) self.model.add_node(Dense(self.input_dim, self.state_dim, init='one'), name='i2h', input='input') self.model.add_node(Dense(self.state_dim, self.state_dim, init='orthogonal'), name='h2h', inputs='h') self.model.add_node(Lambda(lambda x: x), name='rec', inputs=['i2h', 'h2h'], merge_mode='sum', return_state='h', create_output=True) self.model2 = Sequential() self.model2.add(SimpleRNN(input_dim=self.input_dim, activation='linear', inner_init='one', output_dim=self.state_dim, init='one', return_sequences=True)) U = self.model.nodes['h2h'].W.get_value() self.model2.layers[0].U.set_value(U)
def __init__(self, *args, **kwargs): super(TestOrthoRNN, self).__init__(*args, **kwargs) self.input_dim = 2 self.state_dim = 2 self.model = Recursive(return_sequences=True) self.model.add_input('input', ndim=3) # Input is 3D tensor self.model.add_state('h', dim=self.state_dim) self.model.add_node(Dense(self.input_dim, self.state_dim, init='one'), name='i2h', inputs=[ 'input', ]) self.model.add_node(Dense(self.state_dim, self.state_dim, init='orthogonal'), name='h2h', inputs=[ 'h', ]) self.model.add_node(Lambda(lambda x: x), name='rec', inputs=['i2h', 'h2h'], merge_mode='sum', return_state='h', create_output=True) self.model2 = Sequential() self.model2.add( SimpleRNN(input_dim=self.input_dim, activation='linear', inner_init='one', output_dim=self.state_dim, init='one', return_sequences=True)) U = self.model.nodes['h2h'].W.get_value() self.model2.layers[0].U.set_value(U)
def __init__(self, *args, **kwargs): super(TestRecursive, self).__init__(*args, **kwargs) self.input_dim = 2 self.state_dim = 2 self.model = Recursive(return_sequences=True) self.model.add_input('input', ndim=3) # Input is 3D tensor self.model.add_state('h', dim=self.state_dim) self.model.add_node(Dense(self.input_dim + self.state_dim, self.state_dim, init='one'), name='rec', inputs=['input', 'h'], return_state='h') self.model.add_node(Activation('linear'), name='out', input='rec', create_output=True) self.model2 = Sequential() self.model2.add(SimpleRNN(input_dim=self.input_dim, activation='linear', inner_init='one', output_dim=self.state_dim, init='one', return_sequences=True))
class TestOrthoRNN(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestOrthoRNN, self).__init__(*args, **kwargs) self.input_dim = 2 self.state_dim = 2 self.model = Recursive(return_sequences=True) self.model.add_input('input', ndim=3) # Input is 3D tensor self.model.add_state('h', dim=self.state_dim) self.model.add_node(Dense(self.input_dim, self.state_dim, init='one'), name='i2h', input='input') self.model.add_node(Dense(self.state_dim, self.state_dim, init='orthogonal'), name='h2h', inputs='h') self.model.add_node(Lambda(lambda x: x), name='rec', inputs=['i2h', 'h2h'], merge_mode='sum', return_state='h', create_output=True) self.model2 = Sequential() self.model2.add(SimpleRNN(input_dim=self.input_dim, activation='linear', inner_init='one', output_dim=self.state_dim, init='one', return_sequences=True)) U = self.model.nodes['h2h'].W.get_value() self.model2.layers[0].U.set_value(U) def test_step(self): XX = T.matrix() HH = T.matrix() A = self.model._step(XX, HH) F = function([XX, HH], A, allow_input_downcast=True) x = np.ones((1, 2)) h = np.ones((1, 2)) y = F(x, h) assert(y[-1].shape == (1, 2)) def test__get_output(self): X = self.model.get_input() Y = self.model._get_output() F = function([X], Y, allow_input_downcast=True) x = np.ones((3, 5, self.input_dim)).astype(floatX) y = F(x) print y X2 = self.model2.get_input() Y2 = self.model2.get_output() F2 = function([X2], Y2) y2 = F2(x) assert_allclose(y2, y[-1]) def test_get_output(self): X = self.model.get_input() Y = self.model.get_output() F = function([X], Y, allow_input_downcast=True) x = np.ones((3, 5, self.input_dim)).astype(floatX) y = F(x) X2 = self.model2.get_input() Y2 = self.model2.get_output() F2 = function([X2], Y2) y2 = F2(x) print "y-length: {}".format(len(y)) assert_allclose(y2, y)
class TestRecursive(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestRecursive, self).__init__(*args, **kwargs) self.input_dim = 2 self.state_dim = 2 self.model = Recursive(return_sequences=True) self.model.add_input('input', ndim=3) # Input is 3D tensor self.model.add_state('h', dim=self.state_dim) self.model.add_node(Dense(self.input_dim + self.state_dim, self.state_dim, init='one'), name='rec', inputs=['input', 'h'], return_state='h') self.model.add_node(Activation('linear'), name='out', input='rec', create_output=True) self.model2 = Sequential() self.model2.add(SimpleRNN(input_dim=self.input_dim, activation='linear', inner_init='one', output_dim=self.state_dim, init='one', return_sequences=True)) def test_step(self): XX = T.matrix() HH = T.matrix() A = self.model._step(XX, HH) F = function([XX, HH], A, allow_input_downcast=True) x = np.ones((1, 2)) h = np.ones((1, 2)) y = F(x, h) r = np.asarray([[4., 4.]]) assert_allclose([r, r], y) def test_get_get_output(self): X = self.model.get_input() Y = self.model._get_output() F = function([X], Y, allow_input_downcast=True) x = np.ones((3, 5, self.input_dim)).astype(floatX) y = F(x) print y X2 = self.model2.get_input() Y2 = self.model2.get_output() F2 = function([X2], Y2) y2 = F2(x) assert_allclose(y2, y[1])
class TestOrthoRNN(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestOrthoRNN, self).__init__(*args, **kwargs) self.input_dim = 2 self.state_dim = 2 self.model = Recursive(return_sequences=True) self.model.add_input('input', ndim=3) # Input is 3D tensor self.model.add_state('h', dim=self.state_dim) self.model.add_node(Dense(self.input_dim, self.state_dim, init='one'), name='i2h', inputs=[ 'input', ]) self.model.add_node(Dense(self.state_dim, self.state_dim, init='orthogonal'), name='h2h', inputs=[ 'h', ]) self.model.add_node(Lambda(lambda x: x), name='rec', inputs=['i2h', 'h2h'], merge_mode='sum', return_state='h', create_output=True) self.model2 = Sequential() self.model2.add( SimpleRNN(input_dim=self.input_dim, activation='linear', inner_init='one', output_dim=self.state_dim, init='one', return_sequences=True)) U = self.model.nodes['h2h'].W.get_value() self.model2.layers[0].U.set_value(U) def test_step(self): XX = T.matrix() HH = T.matrix() A = self.model._step(XX, HH) F = function([XX, HH], A, on_unused_input='warn') x = np.ones((1, 2)) h = np.ones((1, 2)) y = F(x, h) assert (y[-1].shape == (1, 2)) def test_get_get_output(self): X = self.model.get_input() Y = self.model._get_output() F = function([X], Y, allow_input_downcast=True) x = np.ones((3, 5, self.input_dim)) y = F(x) print y X2 = self.model2.get_input() Y2 = self.model2.get_output() F2 = function([X2], Y2) y2 = F2(x) assert_allclose(y2, y[-1])
class TestRecursive(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestRecursive, self).__init__(*args, **kwargs) self.input_dim = 2 self.state_dim = 2 self.model = Recursive(return_sequences=True) self.model.add_input('input', ndim=3) # Input is 3D tensor self.model.add_state('h', dim=self.state_dim) self.model.add_node(Dense(self.input_dim + self.state_dim, self.state_dim, init='one'), name='rec', inputs=['input', 'h'], return_state='h') self.model.add_node(Activation('linear'), name='out', input='rec', create_output=True) self.model2 = Sequential() self.model2.add( SimpleRNN(input_dim=self.input_dim, activation='linear', inner_init='one', output_dim=self.state_dim, init='one', return_sequences=True)) def test_step(self): XX = T.matrix() HH = T.matrix() A = self.model._step(XX, HH) F = function([XX, HH], A) x = np.ones((1, 2)) h = np.ones((1, 2)) y = F(x, h) r = np.asarray([[4., 4.]]) assert_allclose([r, r], y) def test_get_get_output(self): X = self.model.get_input() Y = self.model._get_output() F = function([X], Y, allow_input_downcast=True) x = np.ones((3, 5, self.input_dim)) y = F(x) print y X2 = self.model2.get_input() Y2 = self.model2.get_output() F2 = function([X2], Y2) y2 = F2(x) assert_allclose(y2, y[1])