Nir = data['Nir']
M = data['M']
R = data['R']
phi = data['phi']
Omega = data['Omega']
Omega_al = data['Omega_al']
s = data['s']
p = data['p']
snr = data['snr']


# Target positions
K_target = 360  # number of microphones
phi_target = np.linspace(0, 2 * np.pi, num=K_target, endpoint=False)
theta_target = np.pi / 2
x_target = sph2cart(phi_target, theta_target, R) + array_center
x_target = np.array([x_target[0], x_target[1], x_target[2] * np.ones(K_target)]).T

# Desired impulse responses
h0 = []
for m in range(M):
    htemp = np.zeros((K_target, Nir))
    xs = image_sources[m]
    scale = source_strength[m]
    for i, source_pos in enumerate(xs):
        waveform, shift, _ = impulse_response(source_pos, x_target, source_type, fs)
        Lw = waveform.shape[1]
        waveform *= scale[i]
        for k in range(K_target):
            htemp[k, shift[k]:shift[k]+Lw] += waveform[k]
    h0.append(htemp)
    xs, wall_count = image_sources_for_box(x0, dimension, ism_order)
    image_sources.append(xs)
    source_strength.append(np.prod(coeff**wall_count, axis=1))

# Receiver
array_center = room_center
R = 0.2  # radius

# Moving microphone
Omega = 2 * np.pi / 16
L = int(np.ceil(2 * np.pi / Omega * fs))
t = 1 / fs * np.arange(L)
phi0 = 0
phi = Omega * t + phi0
theta = np.pi / 2
x = sph2cart(phi, theta, R) + array_center
x = np.array([x[0], x[1], x[2] * np.ones(L)]).T

# Perfect sequence
max_delay = (np.max(dimension) * (max_order + 1)) / c * fs
Nir = next_divisor(max_delay, fs)
N = M * Nir
p = perfect_sequence_randomphase(N)
#p = perfect_sweep(N)

# Anti-aliasing condition
Omega_al = c / N / R * 0.8  # anti-aliasing angular speed

# Captured signal
snr = -np.infty
s = 0
예제 #3
0
from utils import *
from source import *
from sfs.util import sph2cart
from sys import path

path.append('../')

# Constants
c = 343
fs = 16000

# Source
rho = 3
alpha = np.pi / 2
beta = np.pi / 4
xs = sph2cart(alpha, beta, rho)
source_type = 'point'

# Excitation
N = 800  # excitation period
p = perfect_sequence_randomphase(N)

# Spherical array
R = 0.15

# Gaussian-like sampling scheme
modal_bandwidth = int(np.ceil(np.exp(1) * np.pi * fs / 2 * R / c))
max_sht_order = 15
x, weights = np.polynomial.legendre.leggauss(max_sht_order + 1)
weights *= np.pi / (max_sht_order + 1)
theta = np.arccos(x)