def testSpmm_Replicated(self, r, m, k, n, sparsity, use_gpu): # Helpers to set up the matrices. connector = connectors.Uniform(sparsity, round_to=4) initializer = initializers.Uniform() # Numpy matrices for verification. mask = connector(initializer([m, k])) mask[mask != 0] = 1.0 lhs_np = np.expand_dims(mask, axis=0) * initializer([r, m, k]) rhs_np = initializer([r, k, n]) # TensorFlow graph. topology = sparse_matrix.SparseTopology("topology", mask=mask) lhs = tf.Variable(np.reshape(lhs_np[lhs_np != 0], [r, -1]), dtype=tf.float32) rhs = tf.Variable(rhs_np, dtype=tf.float32) output = ops.replicated_spmm(lhs, topology, rhs) # Execute the op and compare the results. with self.test_session(use_gpu=use_gpu) as sess: sess.run(tf.global_variables_initializer()) out = sess.run(output) for i in range(r): expected_out = np.dot(lhs_np[i, :, :], rhs_np[i, :, :]) self.assertAllClose(out[i, :], expected_out, atol=1e-03, rtol=1e-05)
def testSddmm_Replicated(self, r, m, k, n, sparsity, use_gpu): # Helpers to set up the matrices. connector = connectors.Uniform(sparsity) initializer = initializers.Uniform() # Numpy matrices for verification. lhs_np = initializer([r, m, k]) rhs_np = initializer([r, n, k]) output_np = connector(np.ones([m, n])) # TensorFlow graph. output_topology = sparse_matrix.SparseTopology("output_topology", mask=output_np) lhs = tf.Variable(lhs_np, dtype=tf.float32) rhs = tf.Variable(rhs_np, dtype=tf.float32) output = ops.replicated_sddmm(lhs, rhs, output_topology, transpose_rhs=True) # Execute the op and compare the results. with self.test_session(use_gpu=use_gpu) as sess: sess.run(tf.global_variables_initializer()) # Run the replicated sddmm. v, ro, ci = sess.run([ output, output_topology.row_offsets, output_topology.column_indices ]) for i in range(r): expected_output = self.dense_to_scipy( output_np * np.dot(lhs_np[i, :, :], np.transpose(rhs_np[i, :, :]))) actual_output = self.sparse_to_scipy( v[i, :], ro, ci, shape=expected_output.shape) self.assert_sparse_matrix_equal(actual_output, expected_output, atol=1e-03, rtol=1e-05)
def testSparseSoftmax_Replicated(self, r, m, n, sparsity): # Helpers to set up the matrices. connector = connectors.Uniform(sparsity) initializer = initializers.Uniform() # Numpy matrix for verification. mask = connector(np.ones([m, n])) matrix_np = np.expand_dims(mask, axis=0) * initializer([r, m, n]) # TensorFlow graph. topology = sparse_matrix.SparseTopology("topology", mask=mask) values = tf.Variable(np.reshape(matrix_np[matrix_np != 0], [r, -1]), dtype=tf.float32) output = ops.replicated_sparse_softmax(values, topology) with self.test_session(use_gpu=True) as sess: sess.run(tf.global_variables_initializer()) v, ro, ci = sess.run( [output, topology.row_offsets, topology.column_indices]) # Zero terms should not contribute to the softmax. matrix_np[matrix_np == 0] = -1e9 def softmax(x): maxs = np.expand_dims(x.max(axis=1), axis=1) exps = np.exp(x - maxs) return exps / np.expand_dims(np.sum(exps, axis=1), axis=1) for i in range(r): expected_output = self.dense_to_scipy( softmax(matrix_np[i, :, :])) actual_output = self.sparse_to_scipy(v[i, :], ro, ci, expected_output.shape) self.assert_sparse_matrix_equal(actual_output, expected_output, atol=1e-03, rtol=1e-05)
def transformer_decoder(decoder_input, encoder_output, decoder_self_attention_bias, encoder_decoder_attention_bias, hparams, cache=None, decode_loop_step=None, name="decoder", nonpadding=None, save_weights_to=None, make_image_summary=True, losses=None, layer_collection=None, recurrent_memory_by_layer=None, chunk_number=None): """A stack of transformer layers. Args: decoder_input: a Tensor encoder_output: a Tensor decoder_self_attention_bias: bias Tensor for self-attention (see common_attention.attention_bias()) encoder_decoder_attention_bias: bias Tensor for encoder-decoder attention (see common_attention.attention_bias()) hparams: hyperparameters for model cache: dict, containing tensors which are the results of previous attentions, used for fast decoding. decode_loop_step: An integer, step number of the decoding loop. Only used for inference on TPU. name: a string nonpadding: optional Tensor with shape [batch_size, encoder_length] indicating what positions are not padding. This is used to mask out padding in convolutional layers. We generally only need this mask for "packed" datasets, because for ordinary datasets, no padding is ever followed by nonpadding. save_weights_to: an optional dictionary to capture attention weights for visualization; the weights tensor will be appended there under a string key created from the variable scope (including name). make_image_summary: Whether to make an attention image summary. losses: optional list onto which to append extra training losses layer_collection: A tensorflow_kfac.LayerCollection. Only used by the KFAC optimizer. Default is None. recurrent_memory_by_layer: Optional dict, mapping layer names to instances of transformer_memory.RecurrentMemory. Default is None. chunk_number: an optional integer Tensor with shape [batch] used to operate the recurrent_memory. Returns: y: a Tensors """ x = decoder_input if hparams.sparse_attention_mode == "sparse": # If we want to run with our actual sparse kernels, intercept # the self_attention_type and replace it with our attention fn. seqlen = common_layers.shape_list(x)[1] sparse_attention_topology = sparse_matrix.SparseTopology( "sparse_attention", [seqlen, seqlen], connector=connectors.Uniform(0.955411645)) # 0.955411659 hparams.self_attention_type = functools.partial( hparams.self_attention_type, topology=sparse_attention_topology) elif hparams.sparse_attention_mode == "masked": # If we're training with sparse attention, create the per-layer # attention bias that describes the sparsity pattern. # # NOTE: We share the same pattern across all attention heads # within a layer due to memory constraints (because we're not # actually training with sparse kernels). Per-head patterns # would likely perform better. # # NOTE: We also share the same pattern across all layers, as # protobuf can't save all of these large tensors if we create # more than one of them. decoder_self_attention_bias = generate_sparse_attention_mask( common_layers.shape_list(x)[1], hparams, 0) tf.logging.info("Generated sparse attention mask.") elif hparams.sparse_attention_mode == "dense": # Replace the dot-product attention with our memory efficient # version. hparams.self_attention_type = functools.partial( hparams.self_attention_type, bias=decoder_self_attention_bias) pass else: # For training on TPU, use T2T's standard attention. assert hparams.sparse_attention_mode is None with tf.variable_scope(name): for layer_idx in range(hparams.num_decoder_layers or hparams.num_hidden_layers): x = transformer.transformer_decoder_layer( x, decoder_self_attention_bias, layer_idx, hparams, encoder_decoder_attention_bias=encoder_decoder_attention_bias, encoder_output=encoder_output, cache=cache, decode_loop_step=decode_loop_step, nonpadding=nonpadding, save_weights_to=save_weights_to, make_image_summary=make_image_summary, losses=losses, layer_collection=layer_collection, recurrent_memory_by_layer=recurrent_memory_by_layer, chunk_number=chunk_number) # if normalization is done in layer_preprocess, then it should also be done # on the output, since the output can grow very large, being the sum of # a whole stack of unnormalized layer outputs. return common_layers.layer_preprocess( x, hparams, layer_collection=layer_collection)