def load(self, path): """ Load method allows Shapash user to use pickled SmartExplainer. To use this method you must first declare your SmartExplainer object Watch the following example Parameters ---------- path : str File path of the pickle file. Example -------- >>> xpl = SmartExplainer() >>> xpl.load('path_to_pkl/xpl.pkl') """ dict_to_load = load_pickle(path) if isinstance(dict_to_load, dict): for elem in dict_to_load.keys(): setattr(self, elem, dict_to_load[elem]) self._case, self._classes = self.check_model() self.state = self.choose_state(self.contributions) else: raise ValueError( "pickle file must contain dictionary" )
def load_smartpredictor(path): """ load_smartpredictor allows Shapash users to load SmartPredictor Object already saved into a pickle. Parameters ---------- path : str File path of the pickle file. Example -------- >>> predictor = load_smartpredictor('path_to_pkl/predictor.pkl') """ dict_to_load = load_pickle(path) if isinstance(dict_to_load, dict): predictor = SmartPredictor( features_dict=dict_to_load['features_dict'], model=dict_to_load['model'], columns_dict=dict_to_load['columns_dict'], explainer=dict_to_load['explainer'], features_types=dict_to_load['features_types'], label_dict=dict_to_load['label_dict'], preprocessing=dict_to_load['preprocessing'], postprocessing=dict_to_load['postprocessing']) return predictor else: raise ValueError("pickle file must contain dictionary")