예제 #1
0
    def _clipBounds(self):
        """
        Clip input vector data to bounds of map.
        """
        # returns a list of GeoJSON-like mapping objects
        comp = self.container.getComponents('MMI')[0]
        imtdict = self.container.getIMTGrids('MMI', comp)
        geodict = imtdict['mean'].getGeoDict()
        xmin, xmax, ymin, ymax = (geodict.xmin, geodict.xmax,
                                  geodict.ymin, geodict.ymax)
        bbox = (xmin, ymin, xmax, ymax)
        bboxpoly = sPolygon([(xmin, ymax), (xmax, ymax),
                             (xmax, ymin), (xmin, ymin), (xmin, ymax)])
        self.vectors = {}
        for key, value in self.layerdict.items():
            vshapes = []
            f = fiona.open(value, 'r')
            shapes = f.items(bbox=bbox)
            for shapeidx, shape in shapes:
                tshape = sShape(shape['geometry'])
                try:
                    intshape = tshape.intersection(bboxpoly)
#                except TopologicalError as te:
                except Exception as te:
                    self.logger.warn('Failure to grab %s segment: "%s"'
                                     % (key, str(te)))
                    continue
                vshapes.append(intshape)
            self.logger.debug('Filename is %s' % value)
            f.close()
            self.vectors[key] = vshapes
예제 #2
0
def _clip_bounds(bbox, filename):
    """Clip input fiona-compatible vector file to input bounding box.

    :param bbox:
      Tuple of (xmin,ymin,xmax,ymax) desired clipping bounds.
    :param filename:
      Input name of file containing vector data in a format compatible
      with fiona.
    :returns:
      Shapely Geometry object (Polygon or MultiPolygon).
    """
    f = fiona.open(filename, 'r')
    shapes = list(f.items(bbox=bbox))
    xmin, ymin, xmax, ymax = bbox
    newshapes = []
    bboxpoly = sPolygon([(xmin, ymax), (xmax, ymax), (xmax, ymin),
                         (xmin, ymin), (xmin, ymax)])
    for tshape in shapes:
        myshape = sShape(tshape[1]['geometry'])
        intshape = myshape.intersection(bboxpoly)
        newshapes.append(intshape)
        newshapes.append(myshape)
    gc = GeometryCollection(newshapes)
    f.close()
    return gc
예제 #3
0
def get_country_bounds(ccode, buffer_km=BUFFER_DISTANCE_KM):
    """Get list of country bounds (one for each sub-polygon in country polygon.)

    Args:
        ccode (str): Three letter ISO 3166 country code.
        buffer_km (int): Buffer distance around country boundary.

    Returns:
        list: List of 4-element tuples (xmin, xmax, ymin, ymax)

    """
    xmin = xmax = ymin = ymax = None
    ccode = ccode.upper()
    datapath = os.path.join('data', COUNTRIES_SHP)
    shpfile = pkg_resources.resource_filename('libcomcat', datapath)
    bounds = []
    with fiona.open(shpfile, 'r') as shapes:
        for shape in shapes:
            if shape['properties']['ADM0_A3'] == ccode:
                country = sShape(shape['geometry'])
                if isinstance(country, MultiPolygon):
                    for polygon in country:
                        xmin, ymin, xmax, ymax = _buffer(
                            polygon.bounds, buffer_km)
                        bounds.append((xmin, xmax, ymin, ymax))
                else:
                    xmin, ymin, xmax, ymax = _buffer(country.bounds, buffer_km)
                    bounds.append((xmin, xmax, ymin, ymax))
                break

    return bounds
예제 #4
0
    def _selectRoads(self, roads_folder, bbox):
        """Select road shapes from roads directory.

        Args:
            roads_folder (str): Path to folder containing global roads data.
            bbox (tuple): Tuple of map bounds (xmin,ymin,xmax,ymax).

        Returns:
            list: list of Shapely geometries.
        """
        vshapes = []
        xmin, ymin, xmax, ymax = bbox
        bboxpoly = sPolygon([(xmin, ymax), (xmax, ymax),
                             (xmax, ymin), (xmin, ymin), (xmin, ymax)])
        for root, dirs, files in os.walk(roads_folder):
            for fname in files:
                if fname.endswith('.shp'):
                    filename = os.path.join(root, fname)
                    with fiona.open(filename, 'r') as f:
                        shapes = f.items(bbox=bbox)
                        for shapeidx, shape in shapes:
                            tshape = sShape(shape['geometry'])
                            intshape = tshape.intersection(bboxpoly)
                            vshapes.append(intshape)

        return vshapes
예제 #5
0
def _get_country_shape(ccode):
    datapath = os.path.join('data', COUNTRIES_SHP)
    shpfile = pkg_resources.resource_filename('libcomcat', datapath)
    country = None
    with fiona.open(shpfile, 'r') as shapes:
        for shape in shapes:
            if shape['properties']['ADM0_A3'] == ccode:
                country = sShape(shape['geometry'])

    return country
예제 #6
0
def _get_country_shape(ccode):
    datapath = os.path.join("data", COUNTRIES_SHP)
    shpfile = pkg_resources.resource_filename("libcomcat", datapath)
    country = None
    with fiona.open(shpfile, "r") as shapes:
        for shape in shapes:
            if shape["properties"]["ADM0_A3"] == ccode:
                country = sShape(shape["geometry"])

    return country
예제 #7
0
 def _clipBounds(self):
     #returns a list of GeoJSON-like mapping objects
     xmin,xmax,ymin,ymax = self.shakemap.getBounds()
     bbox = (xmin,ymin,xmax,ymax)
     bboxpoly = sPolygon([(xmin,ymax),(xmax,ymax),(xmax,ymin),(xmin,ymin),(xmin,ymax)])
     self.vectors = {}
     for key,value in self.layerdict.items():
         vshapes = []
         f = fiona.open(value,'r')
         shapes = f.items(bbox=bbox)
         for shapeidx,shape in shapes:
             tshape = sShape(shape['geometry'])
             intshape = tshape.intersection(bboxpoly)
             vshapes.append(intshape)
         print('Filename is %s' % value)
         f.close()
         self.vectors[key] = vshapes
예제 #8
0
def _clip_bounds(bbox, filename):
    """Clip input fiona-compatible vector file to input bounding box.

    :param bbox:
      Tuple of (xmin,ymin,xmax,ymax) desired clipping bounds.
    :param filename:
      Input name of file containing vector data in a format compatible with fiona.
    :returns:
      Shapely Geometry object (Polygon or MultiPolygon).
    """
    #returns a clipped shapely object
    xmin, ymin, xmax, ymax = bbox
    bboxpoly = sPolygon([(xmin, ymax), (xmax, ymax), (xmax, ymin),
                         (xmin, ymin), (xmin, ymax)])
    vshapes = []
    f = fiona.open(filename, 'r')
    shapes = f.items(bbox=bbox)
    for shapeidx, shape in shapes:
        tshape = sShape(shape['geometry'])
        intshape = tshape.intersection(bboxpoly)
        vshapes.append(intshape)
    f.close()
    return vshapes
예제 #9
0
def draw_map(adict, override_scenario=False):
    """If adict['imtype'] is MMI, draw a map of intensity draped over
    topography, otherwise Draw IMT contour lines over hill-shaded topography.

    Args:
        adict (dictionary): A dictionary containing the following keys:
            'imtype' (str): The intensity measure type
            'topogrid' (Grid2d): A topography grid
            'allcities' (Cities): A list of global cities,
            'states_provinces' (Cartopy Feature): States/province boundaries.
            'countries' (Cartopy Feature): Country boundaries.
            'oceans' (Cartopy Feature): Oceans.
            'lakes' (Cartopy Feature): Lakes.
            'roads' (Shapely Feature): Roads.
            'faults' (Shapely Feature): Fault traces
            'datadir' (str): The path into which to deposit products
            'operator' (str): The producer of this shakemap
            'filter_size' (int): The size of the filter used before contouring
            'info' (dictionary): The shakemap info structure
            'component' (str): The intensity measure component being plotted
            'imtdict' (dictionary): Dict containing the IMT grids
            'rupdict' (dictionary): Dict containing the rupture data
            'stationdict' (dictionary): Dict of station data
            'config' (dictionary): The configuration data for this shakemap
            'tdict' (dictionary): The text strings to be printed on the map
                in the user's choice of language.
            'license_text' (str): License text to display at bottom of map
            'license_logo' (str): Path to license logo image to display
                next to license text
        override_scenario (bool): Turn off scenario watermark.

    Returns:
        Tuple of (Matplotlib figure, Matplotlib figure): Objects containing
        the map generated by this function, and the intensity legend,
        respectively. If the imtype of this map is not 'MMI', the second
        element of the tuple will be None.
    """
    imtype = adict['imtype']
    imtdict = adict['imtdict']      # mmidict
    imtdata = np.nan_to_num(imtdict['mean'], nan=0.0) # mmidata
    gd = GeoDict(imtdict['mean_metadata'])
    imtgrid = Grid2D(imtdata, gd)   # mmigrid

    gd = imtgrid.getGeoDict()

    # Retrieve the epicenter - this will get used on the map
    rupture = rupture_from_dict(adict['ruptdict'])
    origin = rupture.getOrigin()
    center_lat = origin.lat
    center_lon = origin.lon

    # load the cities data, limit to cities within shakemap bounds
    cities = adict['allcities'].limitByBounds((gd.xmin, gd.xmax,
                                               gd.ymin, gd.ymax))

    # get the map boundaries and figure size
    bounds, figsize, aspect = _get_map_info(gd)

    # Note: dimensions are: [left, bottom, width, height]
    dim_left = 0.1
    dim_bottom = 0.19
    dim_width = 0.8
    dim_height = dim_width/aspect
    if dim_height > 0.8:
        dim_height = 0.8
        dim_width = 0.8 * aspect
        dim_left = (1.0 - dim_width) / 2

    # Create the MercatorMap object, which holds a separate but identical
    # axes object used to determine collisions between city labels.
    mmap = MercatorMap(
        bounds, figsize, cities, padding=0.5,
        dimensions=[dim_left, dim_bottom, dim_width, dim_height])
    fig = mmap.figure
    ax = mmap.axes
    # this needs to be done here so that city label collision
    # detection will work
    fig.canvas.draw()

    # get the geographic projection object
    geoproj = mmap.geoproj
    # get the mercator projection object
    proj = mmap.proj
    # get the proj4 string - used by Grid2D project() method
    projstr = proj.proj4_init

    # get the projected IMT and topo grids
    pimtgrid, ptopogrid = _get_projected_grids(imtgrid, adict['topogrid'],
                                               projstr)

    # get the projected geodict
    proj_gd = pimtgrid.getGeoDict()

    pimtdata = pimtgrid.getData()
    ptopo_data = ptopogrid.getData()

    mmimap = ColorPalette.fromPreset('mmi')

    if imtype == 'MMI':
        draped_hsv = _get_draped(pimtdata, ptopo_data, mmimap)
    else:
        # get the draped topo data
        topo_colormap = ColorPalette.fromPreset('shaketopo')
        draped_hsv = _get_shaded(ptopo_data, topo_colormap)
        # convert units
        if imtype == 'PGV':
            pimtdata = np.exp(pimtdata)
        else:
            pimtdata = np.exp(pimtdata) * 100

    plt.sca(ax)
    ax.set_xlim(proj_gd.xmin, proj_gd.xmax)
    ax.set_ylim(proj_gd.ymin, proj_gd.ymax)
    img_extent = (proj_gd.xmin, proj_gd.xmax, proj_gd.ymin, proj_gd.ymax)

    plt.imshow(draped_hsv, origin='upper', extent=img_extent,
               zorder=IMG_ZORDER, interpolation='none')

    config = adict['config']
    gmice = get_object_from_config('gmice', 'modeling', config)
    gmice_imts = gmice.DEFINED_FOR_INTENSITY_MEASURE_TYPES
    gmice_pers = gmice.DEFINED_FOR_SA_PERIODS

    oqimt = imt.from_string(imtype)

    if imtype != 'MMI' and (not isinstance(oqimt, tuple(gmice_imts)) or
                            (isinstance(oqimt, imt.SA) and
                             oqimt.period not in gmice_pers)):
        my_gmice = None
    else:
        my_gmice = gmice

    if imtype != 'MMI':
        # call the contour module in plotting to get the vertices of the
        # contour lines
        contour_objects = contour(imtdict, imtype, adict['filter_size'],
                                  my_gmice)

        # get a color palette for the levels we have
        # levels = [c['properties']['value'] for c in contour_objects]

        # cartopy shapely feature has some weird behaviors, so I had to go
        # rogue and draw contour lines/labels myself.

        # To choose which contours to label, we will keep track of the lengths
        # of contours, grouped by isovalue
        contour_lens = defaultdict(lambda: [])
        def arclen(path):
            """
            Compute the arclength of *path*, which should be a list of pairs
            of numbers.
            """
            x0, y0 = [np.array(c) for c in zip(*path)]
            x1, y1 = [np.roll(c, -1) for c in (x0, y0)] # offset by 1
            # don't include first-last vertices as an edge:
            x0, y0, x1, y1 = [c[:-1] for c in (x0, y0, x1, y1)]
            return np.sum(np.sqrt((x0 - x1)**2 + (y0 - y1)**2))

        # draw dashed contours first, the ones over land will be overridden by
        # solid contours
        for contour_object in contour_objects:
            props = contour_object['properties']
            multi_lines = sShape(contour_object['geometry'])
            pmulti_lines = proj.project_geometry(multi_lines, src_crs=geoproj)
            for multi_line in pmulti_lines:
                pmulti_line = mapping(multi_line)['coordinates']
                x, y = zip(*pmulti_line)
                contour_lens[props['value']].append(arclen(pmulti_line))
                # color = imt_cmap.getDataColor(props['value'])
                ax.plot(x, y, color=props['color'], linestyle='dashed',
                        zorder=DASHED_CONTOUR_ZORDER)

        white_box = dict(
            boxstyle="round",
            ec=(0, 0, 0),
            fc=(1., 1, 1),
            color='k'
        )

        # draw solid contours next - the ones over water will be covered by
        # ocean polygon
        for contour_object in contour_objects:
            props = contour_object['properties']
            multi_lines = sShape(contour_object['geometry'])
            pmulti_lines = proj.project_geometry(multi_lines, src_crs=geoproj)

            # only label long contours (relative to others with the same
            # isovalue)
            min_len = np.array(contour_lens[props['value']]).mean()

            for multi_line in pmulti_lines:
                pmulti_line = mapping(multi_line)['coordinates']
                x, y = zip(*pmulti_line)
                # color = imt_cmap.getDataColor(props['value'])
                ax.plot(x, y, color=props['color'], linestyle='solid',
                        zorder=CONTOUR_ZORDER)
                if arclen(pmulti_line) >= min_len:
                    # try to label each segment with black text in a white box
                    xc = x[int(len(x)/3)]
                    yc = y[int(len(y)/3)]
                    if _label_close_to_edge(
                            xc, yc, proj_gd.xmin, proj_gd.xmax,
                            proj_gd.ymin, proj_gd.ymax):
                        continue
                    # TODO: figure out if box is going to go outside the map,
                    # if so choose a different point on the line.

                    # For small values, use scientific notation with 1 sig fig
                    # to avoid multiple contours labelled 0.0:
                    value = props['value']
                    fmt = '%.1g' if abs(value) < 0.1 else '%.1f'
                    ax.text(xc, yc, fmt % value, size=8,
                            ha="center", va="center",
                            bbox=white_box, zorder=AXES_ZORDER-1)

    # make the border thicker
    lw = 2.0
    ax.outline_patch.set_zorder(BORDER_ZORDER)
    ax.outline_patch.set_linewidth(lw)
    ax.outline_patch.set_joinstyle('round')
    ax.outline_patch.set_capstyle('round')

    # Coastlines will get drawn when we draw the ocean edges
    # ax.coastlines(resolution="10m", zorder=COAST_ZORDER, linewidth=3)

    if adict['states_provinces']:
        ax.add_feature(adict['states_provinces'], edgecolor='0.5',
                       zorder=COAST_ZORDER)

    if adict['countries']:
        ax.add_feature(adict['countries'], edgecolor='black',
                       zorder=BORDER_ZORDER)

    if adict['oceans']:
        ax.add_feature(adict['oceans'], edgecolor='black',
                       zorder=OCEAN_ZORDER)

    if adict['lakes']:
        ax.add_feature(adict['lakes'], edgecolor='black',
                       zorder=OCEAN_ZORDER)

    if adict['faults'] is not None:
        ax.add_feature(adict['faults'], edgecolor='firebrick',
                       zorder=ROAD_ZORDER)

    if adict['roads'] is not None:
        ax.add_feature(adict['roads'], edgecolor='dimgray',
                       zorder=ROAD_ZORDER)

    # draw graticules, ticks, tick labels
    _draw_graticules(ax, *bounds)

    # is this event a scenario?
    info = adict['info']
    etype = info['input']['event_information']['event_type']
    is_scenario = etype == 'SCENARIO'

    if is_scenario and not override_scenario:
        plt.text(
            center_lon, center_lat,
            adict['tdict']['title_parts']['scenario'],
            fontsize=72,
            zorder=SCENARIO_ZORDER, transform=geoproj,
            alpha=WATERMARK_ALPHA, color=WATERMARK_COLOR,
            horizontalalignment='center',
            verticalalignment='center',
            rotation=45,
            path_effects=[
                path_effects.Stroke(linewidth=1, foreground='black')]
        )

    # Draw the map scale in the unoccupied lower corner.
    corner = 'll'
    draw_scale(ax, corner, pady=0.05, padx=0.05, zorder=SCALE_ZORDER)

    # draw cities
    mmap.drawCities(shadow=True, zorder=CITIES_ZORDER, draw_dots=True)

    # Draw the epicenter as a black star
    plt.sca(ax)
    plt.plot(center_lon, center_lat, 'k*', markersize=16,
             zorder=EPICENTER_ZORDER, transform=geoproj)

    # draw the rupture polygon(s) in black, if not point rupture
    point_source = True
    if not isinstance(rupture, PointRupture):
        point_source = False
        json_dict = rupture._geojson
        for feature in json_dict['features']:
            for coords in feature['geometry']['coordinates']:
                for pcoords in coords:
                    poly2d = sLineString([xy[0:2] for xy in pcoords])
                    ppoly = proj.project_geometry(poly2d)
                    mppoly = mapping(ppoly)['coordinates']
                    for spoly in mppoly:
                        x, y = zip(*spoly)
                        ax.plot(x, y, 'k', lw=1, zorder=FAULT_ZORDER)

    # draw the station data on the map
    stations = adict['stationdict']
    _draw_stations(ax, stations, imtype, mmimap, geoproj)

    _draw_title(imtype, adict)

    process_time = info['processing']['shakemap_versions']['process_time']
    map_version = int(info['processing']['shakemap_versions']['map_version'])
    if imtype == 'MMI':
        _draw_mmi_legend(fig, mmimap, gmice, process_time,
                         map_version, point_source, adict['tdict'])
        # make a separate MMI legend
        fig2 = plt.figure(figsize=figsize)
        _draw_mmi_legend(fig2, mmimap, gmice, process_time,
                         map_version, point_source, adict['tdict'])

    else:
        _draw_imt_legend(fig, mmimap, imtype, gmice, process_time, map_version,
                         point_source, adict['tdict'])
        plt.draw()
        fig2 = None

    _draw_license(fig, adict)

    return (fig, fig2)
예제 #10
0
파일: hazus.py 프로젝트: cbworden/pager
    def drawHazusMap(self, shakegrid, filename, model_config):
        gd = shakegrid.getGeoDict()

        # Retrieve the epicenter - this will get used on the map (??)
        center_lat = shakegrid.getEventDict()['lat']
        center_lon = shakegrid.getEventDict()['lon']

        # define the map
        # first cope with stupid 180 meridian
        height = (gd.ymax - gd.ymin) * 111.191
        if gd.xmin < gd.xmax:
            width = (gd.xmax - gd.xmin) * \
                np.cos(np.radians(center_lat)) * 111.191
            xmin, xmax, ymin, ymax = (gd.xmin, gd.xmax, gd.ymin, gd.ymax)
        else:
            xmin, xmax, ymin, ymax = (gd.xmin, gd.xmax, gd.ymin, gd.ymax)
            xmax += 360
            width = ((gd.xmax + 360) - gd.xmin) * \
                np.cos(np.radians(center_lat)) * 111.191

        aspect = width / height

        # if the aspect is not 1, then trim bounds in
        # x or y direction as appropriate
        if width > height:
            dw = (width - height) / 2.0  # this is width in km
            xmin = xmin + dw / (np.cos(np.radians(center_lat)) * 111.191)
            xmax = xmax - dw / (np.cos(np.radians(center_lat)) * 111.191)
            width = (xmax - xmin) * np.cos(np.radians(center_lat)) * 111.191
        if height > width:
            dh = (height - width) / 2.0  # this is width in km
            ymin = ymin + dh / 111.191
            ymax = ymax - dh / 111.191
            height = (ymax - ymin) * 111.191

        aspect = width / height
        figheight = FIGWIDTH / aspect
        bounds = (xmin, xmax, ymin, ymax)
        figsize = (FIGWIDTH, figheight)

        # load the counties here so we can grab the county names to
        # draw on the map
        counties_file = model_config['counties']
        counties_shapes = fiona.open(counties_file, 'r')
        counties = counties_shapes.items(bbox=(xmin, ymin, xmax, ymax))
        county_shapes = []

        county_columns = {
            'name': [],
            'lat': [],
            'lon': [],
            'pop': [],
        }

        for cid, county in counties:
            # county is a dictionary
            county_shape = sShape(county['geometry'])
            state_fips = county['properties']['STATEFP10']
            county_fips = county['properties']['COUNTYFP10']
            fips = int(state_fips + county_fips)
            df = self._dataframe
            weight = 1
            if (df['CountyFips'] == fips).any():
                loss_row = df[df['CountyFips'] == fips].iloc[0]
                weight = loss_row['EconLoss']
            center_point = county_shape.centroid
            county_name = county['properties']['NAMELSAD10'].replace(
                'County', '').strip()
            # feature = ShapelyFeature([county_shape], ccrs.PlateCarree(),
            #                          zorder=COUNTY_ZORDER)
            county_shapes.append(county_shape)
            county_columns['name'].append(county_name)
            county_columns['pop'].append(county_shape.area * weight)
            county_columns['lat'].append(center_point.y)
            county_columns['lon'].append(center_point.x)
            # ax.add_feature(feature, facecolor=GREY,
            #                edgecolor='grey', linewidth=0.5)
            # tx, ty = mmap.proj.transform_point(
            #     center_point.x, center_point.y, ccrs.PlateCarree())
            # plt.text(tx, ty, county_name,
            #          zorder=NAME_ZORDER,
            #          horizontalalignment='center',
            #          verticalalignment='center')

        # Create the MercatorMap object, which holds a separate but identical
        # axes object used to determine collisions between city labels.
        # here we're pretending that county names are city names.
        county_df = pd.DataFrame(county_columns)
        cities = Cities(county_df)
        mmap = MercatorMap(bounds, figsize, cities, padding=0.5)
        fig = mmap.figure
        ax = mmap.axes
        geoproj = mmap.geoproj
        proj = mmap.proj

        # this is a workaround to an occasional problem where some vector layers
        # are not rendered. See
        # https://github.com/SciTools/cartopy/issues/1155#issuecomment-432941088
        proj._threshold /= 6

        # this needs to be done here so that city label collision
        # detection will work
        fig.canvas.draw()

        # draw county names
        mmap.drawCities(zorder=NAME_ZORDER)

        # now draw the counties in grey
        for county_shape in county_shapes:
            feature = ShapelyFeature([county_shape],
                                     ccrs.PlateCarree(),
                                     zorder=COUNTY_ZORDER)
            ax.add_feature(feature,
                           facecolor=GREY,
                           edgecolor='grey',
                           linewidth=0.5,
                           zorder=COUNTY_ZORDER)

        # now draw the county boundaries only so that we can see
        # them on top of the colored tracts.
        for county_shape in county_shapes:
            feature = ShapelyFeature([county_shape],
                                     ccrs.PlateCarree(),
                                     zorder=COUNTY_ZORDER)
            ax.add_feature(feature,
                           facecolor=(0, 0, 0, 0),
                           edgecolor='grey',
                           linewidth=0.5,
                           zorder=NAME_ZORDER)

        # define bounding box we'll use to clip vector data
        bbox = (xmin, ymin, xmax, ymax)

        # load and clip ocean vectors to match map boundaries
        oceanfile = model_config['ocean_vectors']
        oceanshapes = _clip_bounds(bbox, oceanfile)
        ax.add_feature(ShapelyFeature(oceanshapes, crs=geoproj),
                       facecolor=WATERCOLOR,
                       zorder=OCEAN_ZORDER)

        # draw states with black border - TODO: Look into
        states_file = model_config['states']
        transparent = '#00000000'
        states = _clip_bounds(bbox, states_file)
        ax.add_feature(ShapelyFeature(states, crs=geoproj),
                       facecolor=transparent,
                       edgecolor='k',
                       zorder=STATE_ZORDER)

        # draw census tracts, colored by loss level
        tracts_file = model_config['tracts']
        tract_shapes = fiona.open(tracts_file, 'r')
        tracts = tract_shapes.items(bbox=(xmin, ymin, xmax, ymax))
        ntracts = 0
        for tid, tract in tracts:
            # tract is a dictionary
            ntracts += 1
            tract_shape = sShape(tract['geometry'])
            state_fips = str(int(tract['properties']['STATEFP10']))
            county_fips = state_fips + tract['properties']['COUNTYFP10']
            fips_column = self._dataframe['CountyFips']
            if not fips_column.isin([county_fips]).any():
                continue
            tract_fips = int(county_fips + tract['properties']['TRACTCE10'])
            econloss = 0.0
            if tract_fips in self._tract_loss:
                econloss = self._tract_loss[tract_fips]
                # print('Tract %i: Economic loss: %.3f' % (tract_fips, econloss))
            else:
                x = 1

            if econloss < 1e3:
                color = GREEN
            elif econloss >= 1e3 and econloss < 1e5:
                color = YELLOW
            elif econloss >= 1e5 and econloss < 1e6:
                color = ORANGE
            else:
                color = RED
            feature = ShapelyFeature([tract_shape],
                                     ccrs.PlateCarree(),
                                     zorder=TRACT_ZORDER)
            ax.add_feature(feature, facecolor=color)

        # # Draw the epicenter as a black star
        # plt.plot(center_lon, center_lat, 'k*', markersize=16,
        #          zorder=EPICENTER_ZORDER, transform=geoproj)

        # save our map out to a file
        logging.info('Saving to %s' % filename)
        t0 = time.time()
        plt.savefig(filename, dpi=300)
        t1 = time.time()
        logging.info('Done saving map - %.2f seconds' % (t1 - t0))