def split_extend_vcf(vcf_fn, output_fn): expand_region_size = param.no_of_positions output_ctg_dict = defaultdict(list) unzip_process = subprocess_popen(shlex.split("gzip -fdc %s" % (vcf_fn))) for row_id, row in enumerate(unzip_process.stdout): if row[0] == '#': continue columns = row.strip().split(maxsplit=3) ctg_name = columns[0] center_pos = int(columns[1]) ctg_start, ctg_end = center_pos - 1, center_pos if ctg_start < 0: sys.exit( log_error("[ERROR] Invalid VCF input in {}-th row {} {} {}".format(row_id + 1, ctg_name, center_pos))) if ctg_start - expand_region_size < 0: continue expand_ctg_start = ctg_start - expand_region_size expand_ctg_end = ctg_end + expand_region_size output_ctg_dict[ctg_name].append( ' '.join([ctg_name, str(expand_ctg_start), str(expand_ctg_end)])) for key, value in output_ctg_dict.items(): ctg_output_fn = os.path.join(output_fn, key) with open(ctg_output_fn, 'w') as output_file: output_file.write('\n'.join(value)) unzip_process.stdout.close() unzip_process.wait() know_vcf_contig_set = set(list(output_ctg_dict.keys())) return know_vcf_contig_set
def check_tools_version(tool_version, required_tool_version): for tool, version in tool_version.items(): required_version = required_tool_version[tool] # whatshap cannot be installed in Mac arm64 system if platform.system() == "Darwin" and tool == 'whatshap': continue if version is None: print(log_error("[ERROR] {} not found, please check you are in clair3 virtual environment".format(tool))) check_python_path() elif version < required_version: print(log_error("[ERROR] Tool version not match, please check you are in clair3 virtual environment")) print(' '.join([str(item).ljust(10) for item in ["Tool", "Version", "Required"]])) error_info = ' '.join([str(item).ljust(10) for item in [tool, version, '>=' + str(required_version)]]) print(error_info) check_python_path() return
def split_extend_bed(bed_fn, output_fn, contig_set=None): expand_region_size = param.no_of_positions output_ctg_dict = defaultdict(list) unzip_process = subprocess_popen(shlex.split("gzip -fdc %s" % (bed_fn))) for row_id, row in enumerate(unzip_process.stdout): if row[0] == '#': continue columns = row.strip().split() ctg_name = columns[0] if contig_set and ctg_name not in contig_set: continue ctg_start, ctg_end = int(columns[1]), int(columns[2]) if ctg_end < ctg_start or ctg_start < 0 or ctg_end < 0: sys.exit(log_error( "[ERROR] Invalid BED input in {}-th row {} {} {}".format(row_id + 1, ctg_name, ctg_start, ctg_end))) expand_ctg_start = max(0, ctg_start - expand_region_size) expand_ctg_end = max(0, ctg_end + expand_region_size) output_ctg_dict[ctg_name].append( ' '.join([ctg_name, str(expand_ctg_start), str(expand_ctg_end)])) for key, value in output_ctg_dict.items(): ctg_output_fn = os.path.join(output_fn, key) with open(ctg_output_fn, 'w') as output_file: output_file.write('\n'.join(value)) unzip_process.stdout.close() unzip_process.wait()
def CreateTensorPileup(args): """ Create pileup tensor for pileup model training or calling. Use slide window to scan the whole candidate regions, keep all candidates over specific minimum allelic frequency and minimum depth, use samtools mpileup to store pileup info for pileup tensor generation. Only scan candidate regions once, we could directly get all variant candidates directly. """ ctg_start = args.ctgStart ctg_end = args.ctgEnd fasta_file_path = args.ref_fn ctg_name = args.ctgName samtools_execute_command = args.samtools bam_file_path = args.bam_fn chunk_id = args.chunk_id - 1 if args.chunk_id else None # 1-base to 0-base chunk_num = args.chunk_num tensor_can_output_path = args.tensor_can_fn minimum_af_for_candidate = args.min_af minimum_snp_af_for_candidate = args.snp_min_af minimum_indel_af_for_candidate = args.indel_min_af min_coverage = args.minCoverage platform = args.platform confident_bed_fn = args.bed_fn is_confident_bed_file_given = confident_bed_fn is not None alt_fn = args.indel_fn extend_bed = args.extend_bed is_extend_bed_file_given = extend_bed is not None min_mapping_quality = args.minMQ min_base_quality = args.minBQ fast_mode = args.fast_mode vcf_fn = args.vcf_fn is_known_vcf_file_provided = vcf_fn is not None call_snp_only = args.call_snp_only global test_pos test_pos = None # 1-based regions [start, end] (start and end inclusive) ref_regions = [] reads_regions = [] known_variants_set = set() tree, bed_start, bed_end = bed_tree_from(bed_file_path=extend_bed, contig_name=ctg_name, return_bed_region=True) fai_fn = file_path_from(fasta_file_path, suffix=".fai", exit_on_not_found=True, sep='.') if not is_confident_bed_file_given and chunk_id is not None: contig_length = 0 with open(fai_fn, 'r') as fai_fp: for row in fai_fp: columns = row.strip().split("\t") contig_name = columns[0] if contig_name != ctg_name: continue contig_length = int(columns[1]) chunk_size = contig_length // chunk_num + 1 if contig_length % chunk_num else contig_length // chunk_num ctg_start = chunk_size * chunk_id # 0-base to 1-base ctg_end = ctg_start + chunk_size if is_confident_bed_file_given and chunk_id is not None: chunk_size = (bed_end - bed_start) // chunk_num + 1 if ( bed_end - bed_start) % chunk_num else (bed_end - bed_start) // chunk_num ctg_start = bed_start + 1 + chunk_size * chunk_id # 0-base to 1-base ctg_end = ctg_start + chunk_size if is_known_vcf_file_provided and chunk_id is not None: known_variants_list = vcf_candidates_from(vcf_fn=vcf_fn, contig_name=ctg_name) total_variants_size = len(known_variants_list) chunk_variants_size = total_variants_size // chunk_num if total_variants_size % chunk_num == 0 else total_variants_size // chunk_num + 1 chunk_start_pos = chunk_id * chunk_variants_size known_variants_set = set( known_variants_list[chunk_start_pos:chunk_start_pos + chunk_variants_size]) if len(known_variants_set) == 0: return ctg_start, ctg_end = min(known_variants_set), max(known_variants_set) is_ctg_name_given = ctg_name is not None is_ctg_range_given = is_ctg_name_given and ctg_start is not None and ctg_end is not None if is_ctg_range_given: extend_start = ctg_start - no_of_positions extend_end = ctg_end + no_of_positions reads_regions.append( region_from(ctg_name=ctg_name, ctg_start=extend_start, ctg_end=extend_end)) reference_start, reference_end = ctg_start - param.expandReferenceRegion, ctg_end + param.expandReferenceRegion reference_start = 1 if reference_start < 1 else reference_start ref_regions.append( region_from(ctg_name=ctg_name, ctg_start=reference_start, ctg_end=reference_end)) elif is_ctg_name_given: reads_regions.append(region_from(ctg_name=ctg_name)) ref_regions.append(region_from(ctg_name=ctg_name)) reference_start = 1 reference_sequence = reference_sequence_from( samtools_execute_command=samtools_execute_command, fasta_file_path=fasta_file_path, regions=ref_regions) if reference_sequence is None or len(reference_sequence) == 0: sys.exit( log_error( "[ERROR] Failed to load reference sequence from file ({}).". format(fasta_file_path))) if is_confident_bed_file_given and ctg_name not in tree: sys.exit( log_error("[ERROR] ctg_name {} not exists in bed file({}).".format( ctg_name, confident_bed_fn))) # samtools mpileup options # reverse-del: deletion in forward/reverse strand were marked as '*'/'#' min_base_quality = 0 if args.gvcf else min_base_quality max_depth = param.max_depth_dict[ args.platform] if args.platform else args.max_depth mq_option = ' --min-MQ {}'.format(min_mapping_quality) bq_option = ' --min-BQ {}'.format(min_base_quality) flags_option = ' --excl-flags {}'.format(param.SAMTOOLS_VIEW_FILTER_FLAG) max_depth_option = ' --max-depth {}'.format(max_depth) bed_option = ' -l {}'.format( extend_bed) if is_extend_bed_file_given else "" gvcf_option = ' -a' if args.gvcf else "" samtools_mpileup_process = subprocess_popen( shlex.split("{} mpileup {} -r {} --reverse-del".format( samtools_execute_command, bam_file_path, " ".join(reads_regions), ) + mq_option + bq_option + bed_option + flags_option + max_depth_option + gvcf_option)) if tensor_can_output_path != "PIPE": tensor_can_fpo = open(tensor_can_output_path, "wb") tensor_can_fp = subprocess_popen(shlex.split("{} -c".format( param.zstd)), stdin=PIPE, stdout=tensor_can_fpo) else: tensor_can_fp = TensorStdout(sys.stdout) # whether save all alternative information, only for debug mode if alt_fn: alt_fp = open(alt_fn, 'w') pos_offset = 0 pre_pos = -1 tensor = [[]] * sliding_window_size candidate_position = [] all_alt_dict = {} depth_dict = {} af_dict = {} # to generate gvcf, it is needed to record whole genome statistical information if args.gvcf: nonVariantCaller = variantInfoCalculator( gvcfWritePath=args.temp_file_dir, ref_path=args.ref_fn, bp_resolution=args.bp_resolution, ctgName=ctg_name, sample_name='.'.join( [args.sampleName, ctg_name, str(ctg_start), str(ctg_end)]), p_err=args.base_err, gq_bin_size=args.gq_bin_size) confident_bed_tree = bed_tree_from(bed_file_path=confident_bed_fn, contig_name=ctg_name, bed_ctg_start=extend_start, bed_ctg_end=extend_end) empty_pileup_flag = True for row in samtools_mpileup_process.stdout: empty_pileup_flag = False columns = row.strip().split('\t', maxsplit=5) pos = int(columns[1]) pileup_bases = columns[4] reference_base = reference_sequence[pos - reference_start].upper() valid_reference_flag = True within_flag = True if args.gvcf: if not valid_reference_flag: nonVariantCaller.make_gvcf_online({}, push_current=True) if ctg_start != None and ctg_end != None: within_flag = pos >= ctg_start and pos < ctg_end elif ctg_start != None and ctg_end == None: within_flag = pos >= ctg_start elif ctg_start == None and ctg_end != None: within_flag = pos <= ctg_end else: within_flag = True if columns[3] == '0' and within_flag and valid_reference_flag: cur_site_info = { 'chr': columns[0], 'pos': pos, 'ref': reference_base, 'n_total': 0, 'n_ref': 0 } nonVariantCaller.make_gvcf_online(cur_site_info) continue # start with a new region, clear all sliding windows cache, avoid memory occupation if pre_pos + 1 != pos: pos_offset = 0 tensor = [[]] * sliding_window_size candidate_position = [] pre_pos = pos # a condition to skip some positions creating tensor,but return allele summary # allele count function pileup_tensor, alt_dict, af, depth, pass_af, pileup_list, max_del_length = generate_tensor( pos=pos, pileup_bases=pileup_bases, reference_sequence=reference_sequence, reference_start=reference_start, reference_base=reference_base, minimum_af_for_candidate=minimum_af_for_candidate, minimum_snp_af_for_candidate=minimum_snp_af_for_candidate, minimum_indel_af_for_candidate=minimum_indel_af_for_candidate, platform=platform, fast_mode=fast_mode, call_snp_only=call_snp_only) if args.gvcf and within_flag and valid_reference_flag: cur_n_total = 0 cur_n_ref = 0 for _key, _value in pileup_list: if (_key == reference_base): cur_n_ref = _value cur_n_total += _value cur_site_info = { 'chr': columns[0], 'pos': pos, 'ref': reference_base, 'n_total': cur_n_total, 'n_ref': cur_n_ref } nonVariantCaller.make_gvcf_online(cur_site_info) pass_confident_bed = not is_confident_bed_file_given or is_region_in( tree=confident_bed_tree, contig_name=ctg_name, region_start=pos - 1, region_end=pos + max_del_length + 1) # 0-based if (pass_confident_bed and reference_base in 'ACGT' and (pass_af and depth >= min_coverage) and not is_known_vcf_file_provided) or ( is_known_vcf_file_provided and pos in known_variants_set): candidate_position.append(pos) all_alt_dict[pos] = alt_dict depth_dict[pos] = depth af_dict[pos] = af tensor[pos_offset] = pileup_tensor # save pileup tensor for each candidate position with nearby flanking_base_num bp distance pos_offset = (pos_offset + 1) % sliding_window_size if len(candidate_position ) and pos - candidate_position[0] == flanking_base_num: center = candidate_position.pop(0) has_empty_tensor = sum([True for item in tensor if not len(item)]) if not has_empty_tensor: depth = depth_dict[center] ref_seq = reference_sequence[center - (flanking_base_num) - reference_start:center + flanking_base_num + 1 - reference_start] concat_tensor = tensor[pos_offset:] + tensor[0:pos_offset] alt_info = str(depth) + '-' + ' '.join([ ' '.join([item[0], str(item[1])]) for item in list(all_alt_dict[center].items()) ]) l = "%s\t%d\t%s\t%s\t%s" % ( ctg_name, center, ref_seq, " ".join( " ".join("%d" % x for x in innerlist) for innerlist in concat_tensor), alt_info) tensor_can_fp.stdin.write(l) tensor_can_fp.stdin.write("\n") if alt_fn: alt_info = ' '.join([ ' '.join([item[0], str(item[1])]) for item in list(all_alt_dict[center].items()) ]) alt_fp.write('\t'.join([ ctg_name + ' ' + str(center), str(depth), alt_info, str(af_dict[center]) ]) + '\n') del all_alt_dict[center], depth_dict[center], af_dict[center] if args.gvcf and len(nonVariantCaller.current_block) != 0: nonVariantCaller.write_to_gvcf_batch(nonVariantCaller.current_block, nonVariantCaller.cur_min_DP, nonVariantCaller.cur_raw_gq) if args.gvcf and empty_pileup_flag: nonVariantCaller.write_empty_pileup(ctg_name, ctg_start, ctg_end) if args.gvcf: nonVariantCaller.close_vcf_writer() samtools_mpileup_process.stdout.close() samtools_mpileup_process.wait() if tensor_can_output_path != "PIPE": tensor_can_fp.stdin.close() tensor_can_fp.wait() tensor_can_fpo.close() if alt_fn: alt_fp.close()
def sort_vcf_from(args): """ Sort vcf file from providing vcf filename prefix. """ output_fn = args.output_fn input_dir = args.input_dir vcf_fn_prefix = args.vcf_fn_prefix vcf_fn_suffix = args.vcf_fn_suffix sample_name = args.sampleName ref_fn = args.ref_fn contigs_fn = args.contigs_fn if not os.path.exists(input_dir): exit( log_error("[ERROR] Input directory: {} not exists!").format( input_dir)) all_files = os.listdir(input_dir) if vcf_fn_prefix is not None: all_files = [ item for item in all_files if item.startswith(vcf_fn_prefix) ] if len(all_files) == 0: output_header(output_fn=output_fn, reference_file_path=ref_fn, sample_name=sample_name) print( log_warning( "[WARNING] No vcf file found with prefix:{}/{}, output empty vcf file" .format(input_dir, vcf_fn_prefix))) compress_index_vcf(output_fn) print_calling_step(output_fn=output_fn) return if vcf_fn_suffix is not None: all_files = [ item for item in all_files if item.endswith(vcf_fn_suffix) ] if len(all_files) == 0: output_header(output_fn=output_fn, reference_file_path=ref_fn, sample_name=sample_name) print( log_warning( "[WARNING] No vcf file found with suffix:{}/{}, output empty vcf file" .format(input_dir, vcf_fn_prefix))) compress_index_vcf(output_fn) print_calling_step(output_fn=output_fn) return all_contigs_list = [] if contigs_fn and os.path.exists(contigs_fn): with open(contigs_fn) as f: all_contigs_list = [item.rstrip() for item in f.readlines()] else: exit( log_error("[ERROR] Cannot find contig file {}. Exit!").format( contigs_fn)) contigs_order = major_contigs_order + all_contigs_list contigs_order_list = sorted(all_contigs_list, key=lambda x: contigs_order.index(x)) row_count = 0 header = [] no_vcf_output = True need_write_header = True # only compress intermediate gvcf using lz4 output and keep final gvcf in bgzip format output_bgzip_gvcf = vcf_fn_suffix == '.gvcf' compress_gvcf = 'gvcf' in vcf_fn_suffix if compress_gvcf: lz4_path = subprocess.run("which lz4", stdout=subprocess.PIPE, shell=True).stdout.decode().rstrip() compress_gvcf = True if lz4_path != "" else False is_lz4_format = compress_gvcf compress_gvcf_output = compress_gvcf and not output_bgzip_gvcf if compress_gvcf_output: write_fpo = open(output_fn, 'w') write_proc = subprocess_popen(shlex.split("lz4 -c"), stdin=subprocess.PIPE, stdout=write_fpo, stderr=subprocess.DEVNULL) output = write_proc.stdin else: output = open(output_fn, 'w') for contig in contigs_order_list: contig_dict = defaultdict(str) contig_vcf_fns = [fn for fn in all_files if contig in fn] for vcf_fn in contig_vcf_fns: file = os.path.join(input_dir, vcf_fn) if is_lz4_format: read_proc = subprocess_popen(shlex.split("{} {}".format( "lz4 -fdc", file)), stderr=subprocess.DEVNULL) fn = read_proc.stdout else: fn = open(file, 'r') for row in fn: row_count += 1 if row[0] == '#': # skip phasing command line only occur with --enable_phasing, otherwise would lead to hap.py evaluation failure if row.startswith('##commandline='): continue if row not in header: header.append(row) continue # use the first vcf header columns = row.strip().split(maxsplit=3) ctg_name, pos = columns[0], columns[1] # skip vcf file sharing same contig prefix, ie, chr1 and chr11 if ctg_name != contig: break contig_dict[int(pos)] = row no_vcf_output = False fn.close() if is_lz4_format: read_proc.wait() if need_write_header and len(header): if output_bgzip_gvcf: header = check_header_in_gvcf(header=header, contigs_list=all_contigs_list) output.write(''.join(header)) need_write_header = False all_pos = sorted(contig_dict.keys()) for pos in all_pos: output.write(contig_dict[pos]) if compress_gvcf_output: write_proc.stdin.close() write_proc.wait() write_fpo.close() return else: output.close() if row_count == 0: print( log_warning("[WARNING] No vcf file found, output empty vcf file")) output_header(output_fn=output_fn, reference_file_path=ref_fn, sample_name=sample_name) compress_index_vcf(output_fn) print_calling_step(output_fn=output_fn) return if no_vcf_output: output_header(output_fn=output_fn, reference_file_path=ref_fn, sample_name=sample_name) print(log_warning("[WARNING] No variant found, output empty vcf file")) compress_index_vcf(output_fn) print_calling_step(output_fn=output_fn) return if vcf_fn_suffix == ".tmp.gvcf": return if vcf_fn_suffix == ".gvcf": print("[INFO] Need some time to compress and index GVCF file...") compress_index_vcf(output_fn)
def MergeVcf_illumina(args): # region vcf merge for illumina, as read realignment will make candidate varaints shift and missing. bed_fn_prefix = args.bed_fn_prefix output_fn = args.output_fn full_alignment_vcf_fn = args.full_alignment_vcf_fn pileup_vcf_fn = args.pileup_vcf_fn # true vcf var contig_name = args.ctgName QUAL = args.qual bed_fn = None if not os.path.exists(bed_fn_prefix): exit( log_error("[ERROR] Input directory: {} not exists!").format( bed_fn_prefix)) all_files = os.listdir(bed_fn_prefix) all_files = [ item for item in all_files if item.startswith(contig_name + '.') ] if len(all_files) != 0: bed_fn = os.path.join(bed_fn_prefix, "full_aln_regions_{}".format(contig_name)) with open(bed_fn, 'w') as output_file: for file in all_files: with open(os.path.join(bed_fn_prefix, file)) as f: output_file.write(f.read()) is_haploid_precise_mode_enabled = args.haploid_precise is_haploid_sensitive_mode_enabled = args.haploid_sensitive print_ref = args.print_ref_calls tree = bed_tree_from(bed_file_path=bed_fn, padding=param.no_of_positions, contig_name=contig_name) unzip_process = subprocess_popen( shlex.split("gzip -fdc %s" % (pileup_vcf_fn))) output_dict = {} header = [] pileup_count = 0 for row in unzip_process.stdout: if row[0] == '#': header.append(row) continue columns = row.strip().split() ctg_name = columns[0] if contig_name != None and ctg_name != contig_name: continue pos = int(columns[1]) qual = float(columns[5]) pass_bed = is_region_in(tree, ctg_name, pos) ref_base, alt_base = columns[3], columns[4] is_reference = (alt_base == "." or ref_base == alt_base) if is_haploid_precise_mode_enabled: row = update_haploid_precise_genotype(columns) if is_haploid_sensitive_mode_enabled: row = update_haploid_sensitive_genotype(columns) if not pass_bed: if not is_reference: row = MarkLowQual(row, QUAL, qual) output_dict[pos] = row pileup_count += 1 elif print_ref: output_dict[pos] = row pileup_count += 1 unzip_process.stdout.close() unzip_process.wait() realigned_vcf_unzip_process = subprocess_popen( shlex.split("gzip -fdc %s" % (full_alignment_vcf_fn))) realiged_read_num = 0 for row in realigned_vcf_unzip_process.stdout: if row[0] == '#': continue columns = row.strip().split() ctg_name = columns[0] if contig_name != None and ctg_name != contig_name: continue pos = int(columns[1]) qual = float(columns[5]) ref_base, alt_base = columns[3], columns[4] is_reference = (alt_base == "." or ref_base == alt_base) if is_haploid_precise_mode_enabled: row = update_haploid_precise_genotype(columns) if is_haploid_sensitive_mode_enabled: row = update_haploid_sensitive_genotype(columns) if is_region_in(tree, ctg_name, pos): if not is_reference: row = MarkLowQual(row, QUAL, qual) output_dict[pos] = row realiged_read_num += 1 elif print_ref: output_dict[pos] = row realiged_read_num += 1 logging.info('[INFO] Pileup positions variants proceeded in {}: {}'.format( contig_name, pileup_count)) logging.info( '[INFO] Realigned positions variants proceeded in {}: {}'.format( contig_name, realiged_read_num)) realigned_vcf_unzip_process.stdout.close() realigned_vcf_unzip_process.wait() with open(output_fn, 'w') as output_file: output_list = header + [ output_dict[pos] for pos in sorted(output_dict.keys()) ] output_file.write(''.join(output_list))
def check_python_path(): python_path = subprocess.run("which python", stdout=subprocess.PIPE, shell=True).stdout.decode().rstrip() sys.exit(log_error("[ERROR] Current python execution path: {}".format(python_path)))
def CheckEnvs(args): basedir = os.path.dirname(__file__) bam_fn = file_path_from(args.bam_fn, exit_on_not_found=True) ref_fn = file_path_from(args.ref_fn, exit_on_not_found=True) fai_fn = file_path_from(args.ref_fn, suffix=".fai", exit_on_not_found=True, sep='.') bai_fn = file_path_from(args.bam_fn, suffix=".bai", sep='.') csi_fn = file_path_from(args.bam_fn, suffix=".csi", sep='.') if bai_fn is None and csi_fn is None: sys.exit(log_error("[ERROR] Neither Bam index file {} or {} not found".format(file_name + '.bai', file_name + '.csi'))) bed_fn = file_path_from(args.bed_fn) vcf_fn = file_path_from(args.vcf_fn) tree = bed_tree_from(bed_file_path=bed_fn) # create temp file folder output_fn_prefix = args.output_fn_prefix output_fn_prefix = folder_path_from(output_fn_prefix, create_not_found=True) log_path = folder_path_from(os.path.join(output_fn_prefix, 'log'), create_not_found=True) tmp_file_path = folder_path_from(os.path.join(output_fn_prefix, 'tmp'), create_not_found=True) split_bed_path = folder_path_from(os.path.join(tmp_file_path, 'split_beds'), create_not_found=True) if bed_fn or vcf_fn else None pileup_vcf_path = folder_path_from(os.path.join(tmp_file_path, 'pileup_output'), create_not_found=True) merge_vcf_path = folder_path_from(os.path.join(tmp_file_path, 'merge_output'), create_not_found=True) phase_output_path = folder_path_from(os.path.join(tmp_file_path, 'phase_output'), create_not_found=True) gvcf_temp_output_path = folder_path_from(os.path.join(tmp_file_path, 'gvcf_tmp_output'), create_not_found=True) full_alignment_output_path = folder_path_from(os.path.join(tmp_file_path, 'full_alignment_output'), create_not_found=True) phase_vcf_path = folder_path_from(os.path.join(phase_output_path, 'phase_vcf'), create_not_found=True) phase_bam_path = folder_path_from(os.path.join(phase_output_path, 'phase_bam'), create_not_found=True) candidate_bed_path = folder_path_from(os.path.join(full_alignment_output_path, 'candidate_bed'), create_not_found=True) # environment parameters pypy = args.pypy samtools = args.samtools whatshap = args.whatshap parallel = args.parallel qual = args.qual var_pct_full = args.var_pct_full ref_pct_full = args.ref_pct_full snp_min_af = args.snp_min_af indel_min_af = args.indel_min_af min_contig_size = args.min_contig_size sample_name = args.sampleName contig_name_list = os.path.join(tmp_file_path, 'CONTIGS') chunk_list = os.path.join(tmp_file_path, 'CHUNK_LIST') legal_range_from(param_name="qual", x=qual, min_num=0, exit_out_of_range=True) legal_range_from(param_name="var_pct_full", x=var_pct_full, min_num=0, max_num=1, exit_out_of_range=True) legal_range_from(param_name="ref_pct_full", x=ref_pct_full, min_num=0, max_num=1, exit_out_of_range=True) legal_range_from(param_name="snp_min_af", x=snp_min_af, min_num=0, max_num=1, exit_out_of_range=True) legal_range_from(param_name="indel_min_af", x=indel_min_af, min_num=0, max_num=1, exit_out_of_range=True) if ref_pct_full > 0.3: print(log_warning( "[WARNING] For efficiency, we use a maximum 30% reference candidates for full-alignment calling")) tool_version = { 'python': LooseVersion(sys.version.split()[0]), 'pypy': check_version(tool=pypy, pos=0, is_pypy=True), 'samtools': check_version(tool=samtools, pos=1), 'whatshap': check_version(tool=whatshap, pos=1), 'parallel': check_version(tool=parallel, pos=2), } check_tools_version(tool_version, required_tool_version) is_include_all_contigs = args.include_all_ctgs is_bed_file_provided = bed_fn is not None is_known_vcf_file_provided = vcf_fn is not None if is_known_vcf_file_provided and is_bed_file_provided: sys.exit(log_error("[ERROR] Please provide either --vcf_fn or --bed_fn only")) if is_known_vcf_file_provided: know_vcf_contig_set = split_extend_vcf(vcf_fn=vcf_fn, output_fn=split_bed_path) ctg_name_list = args.ctg_name is_ctg_name_list_provided = ctg_name_list is not None and ctg_name_list != "EMPTY" contig_set = set(ctg_name_list.split(',')) if is_ctg_name_list_provided else set() if is_ctg_name_list_provided and is_bed_file_provided: print(log_warning("[WARNING] both --ctg_name and --bed_fn provided, will only proceed contigs in intersection")) if is_ctg_name_list_provided and is_known_vcf_file_provided: print(log_warning("[WARNING] both --ctg_name and --vcf_fn provided, will only proceed contigs in intersection")) if is_ctg_name_list_provided: contig_set = contig_set.intersection( set(tree.keys())) if is_bed_file_provided else contig_set contig_set = contig_set.intersection( know_vcf_contig_set) if is_known_vcf_file_provided else contig_set else: contig_set = contig_set.union( set(tree.keys())) if is_bed_file_provided else contig_set contig_set = contig_set.union( know_vcf_contig_set) if is_known_vcf_file_provided else contig_set # if each split region is too small(long) for given default chunk num, will increase(decrease) the total chunk num default_chunk_num = args.chunk_num DEFAULT_CHUNK_SIZE = args.chunk_size contig_length_list = [] contig_chunk_num = {} with open(fai_fn, 'r') as fai_fp: for row in fai_fp: columns = row.strip().split("\t") contig_name, contig_length = columns[0], int(columns[1]) if not is_include_all_contigs and ( not (is_bed_file_provided or is_ctg_name_list_provided or is_known_vcf_file_provided)) and str( contig_name) not in major_contigs: continue if is_bed_file_provided and contig_name not in tree: continue if is_ctg_name_list_provided and contig_name not in contig_set: continue if is_known_vcf_file_provided and contig_name not in contig_set: continue if min_contig_size > 0 and contig_length < min_contig_size: print(log_warning( "[WARNING] {} contig length {} is smaller than minimum contig size {}, will skip it!".format(contig_name, contig_length, min_contig_size))) if contig_name in contig_set: contig_set.remove(contig_name) continue contig_set.add(contig_name) contig_length_list.append(contig_length) chunk_num = int( contig_length / float(DEFAULT_CHUNK_SIZE)) + 1 if contig_length % DEFAULT_CHUNK_SIZE else int( contig_length / float(DEFAULT_CHUNK_SIZE)) contig_chunk_num[contig_name] = max(chunk_num, 1) if default_chunk_num > 0: min_chunk_length = min(contig_length_list) / float(default_chunk_num) max_chunk_length = max(contig_length_list) / float(default_chunk_num) contigs_order = major_contigs_order + list(contig_set) sorted_contig_list = sorted(list(contig_set), key=lambda x: contigs_order.index(x)) found_contig = True if not len(contig_set): if is_bed_file_provided: all_contig_in_bed = ' '.join(list(tree.keys())) print(log_warning("[WARNING] No contig intersection found by --bed_fn, contigs in BED {}: {}".format(bed_fn, all_contig_in_bed))) if is_known_vcf_file_provided: all_contig_in_vcf = ' '.join(list(know_vcf_contig_set)) print(log_warning("[WARNING] No contig intersection found by --vcf_fn, contigs in VCF {}: {}".format(vcf_fn, all_contig_in_vcf))) if is_ctg_name_list_provided: all_contig_in_ctg_name = ' '.join(ctg_name_list.split(',')) print(log_warning("[WARNING] No contig intersection found by --ctg_name, contigs in contigs list: {}".format(all_contig_in_ctg_name))) found_contig = False else: for c in sorted_contig_list: if c not in contig_chunk_num: print(log_warning(("[WARNING] Contig {} given but not found in reference fai file".format(c)))) # check contig in bam have support reads sorted_contig_list, found_contig = check_contig_in_bam(bam_fn=bam_fn, sorted_contig_list=sorted_contig_list, samtools=samtools) if not found_contig: # output header only to merge_output.vcf.gz output_fn = os.path.join(output_fn_prefix, "merge_output.vcf") output_header(output_fn=output_fn, reference_file_path=ref_fn, sample_name=sample_name) compress_index_vcf(output_fn) print(log_warning( ("[WARNING] No contig intersection found, output header only in {}").format(output_fn + ".gz"))) with open(contig_name_list, 'w') as output_file: output_file.write("") return print('[INFO] Call variant in contigs: {}'.format(' '.join(sorted_contig_list))) print('[INFO] Chunk number for each contig: {}'.format( ' '.join([str(contig_chunk_num[c]) for c in sorted_contig_list]))) if default_chunk_num > 0 and max_chunk_length > MAX_CHUNK_LENGTH: print(log_warning( '[WARNING] Current maximum chunk size {} is larger than default maximum chunk size {}, You may set a larger chunk_num by setting --chunk_num=$ for better parallelism.'.format( min_chunk_length, MAX_CHUNK_LENGTH))) elif default_chunk_num > 0 and min_chunk_length < MIN_CHUNK_LENGTH: print(log_warning( '[WARNING] Current minimum chunk size {} is smaller than default minimum chunk size {}, You may set a smaller chunk_num by setting --chunk_num=$.'.format( min_chunk_length, MIN_CHUNK_LENGTH))) if default_chunk_num == 0 and max(contig_length_list) < DEFAULT_CHUNK_SIZE / 5: print(log_warning( '[WARNING] Current maximum contig length {} is much smaller than default chunk size {}, You may set a smaller chunk size by setting --chunk_size=$ for better parallelism.'.format( max(contig_length_list), DEFAULT_CHUNK_SIZE))) if is_bed_file_provided: split_extend_bed(bed_fn=bed_fn, output_fn=split_bed_path, contig_set=contig_set) with open(contig_name_list, 'w') as output_file: output_file.write('\n'.join(sorted_contig_list)) with open(chunk_list, 'w') as output_file: for contig_name in sorted_contig_list: chunk_num = contig_chunk_num[contig_name] for chunk_id in range(1, chunk_num + 1): output_file.write(contig_name + ' ' + str(chunk_id) + ' ' + str(chunk_num) + '\n')
def call_variants_from_cffi(args, output_config, output_utilities): use_gpu = args.use_gpu if use_gpu: import tritonclient.grpc as tritongrpcclient server_url = 'localhost:8001' try: triton_client = tritongrpcclient.InferenceServerClient( url=server_url, verbose=False) except Exception as e: print("channel creation failed: " + str(e)) sys.exit() else: os.environ["CUDA_VISIBLE_DEVICES"] = "" global param if args.pileup: import shared.param_p as param if use_gpu: model_name = 'pileup' input_dtype = 'INT32' else: from clair3.model import Clair3_P m = Clair3_P(add_indel_length=args.add_indel_length, predict=True) else: import shared.param_f as param if use_gpu: model_name = 'alignment' input_dtype = 'INT8' else: from clair3.model import Clair3_F m = Clair3_F(add_indel_length=args.add_indel_length, predict=True) if not use_gpu: m.load_weights(args.chkpnt_fn) output_utilities.gen_output_file() output_utilities.output_header() chunk_id = args.chunk_id - 1 if args.chunk_id else None # 1-base to 0-base chunk_num = args.chunk_num full_alignment_mode = not args.pileup logging.info("Calling variants ...") variant_call_start_time = time() batch_output_method = batch_output total = 0 if args.pileup: from preprocess.CreateTensorPileupFromCffi import CreateTensorPileup as CT else: from preprocess.CreateTensorFullAlignmentFromCffi import CreateTensorFullAlignment as CT tensor, all_position, all_alt_info = CT(args) def tensor_generator_from(tensor, all_position, all_alt_info): total_data = len(tensor) assert total_data == len(all_alt_info) assert total_data == len(all_position) batch_size = param.predictBatchSize total_chunk = total_data // batch_size if total_data % batch_size == 0 else total_data // batch_size + 1 for chunk_id in range(total_chunk): chunk_start = chunk_id * batch_size chunk_end = ( chunk_id + 1) * batch_size if chunk_id < total_chunk - 1 else total_data yield (tensor[chunk_start:chunk_end], all_position[chunk_start:chunk_end], all_alt_info[chunk_start:chunk_end]) tensor_generator = tensor_generator_from(tensor, all_position, all_alt_info) for (X, position, alt_info_list) in tensor_generator: total += len(X) if use_gpu: inputs = [] outputs = [] inputs.append( tritongrpcclient.InferInput('input_1', X.shape, input_dtype)) outputs.append(tritongrpcclient.InferRequestedOutput('output_1')) inputs[0].set_data_from_numpy(X) results = triton_client.infer(model_name=model_name, inputs=inputs, outputs=outputs) Y = results.as_numpy('output_1') else: Y = m.predict_on_batch(X) batch_output_method(position, alt_info_list, Y, output_config, output_utilities) if chunk_id is not None: logging.info( "Total processed positions in {} (chunk {}/{}) : {}".format( args.ctgName, chunk_id + 1, chunk_num, total)) elif full_alignment_mode: try: chunk_infos = args.call_fn.split('.')[-2] c_id, c_num = chunk_infos.split('_') c_id = int(c_id) + 1 # 0-index to 1-index logging.info( "Total processed positions in {} (chunk {}/{}) : {}".format( args.ctgName, c_id, c_num, total)) except: logging.info("Total processed positions in {} : {}".format( args.ctgName, total)) else: logging.info("Total processed positions in {} : {}".format( args.ctgName, total)) if full_alignment_mode and total == 0: logging.info( log_error("[ERROR] No full-alignment output for file {}/{}".format( args.ctgName, args.call_fn))) logging.info("Total time elapsed: %.2f s" % (time() - variant_call_start_time)) output_utilities.close_opened_files() # remove file if on variant in output if os.path.exists(args.call_fn): for row in open(args.call_fn, 'r'): if row[0] != '#': return logging.info( "[INFO] No vcf output for file {}, remove empty file".format( args.call_fn)) os.remove(args.call_fn)