예제 #1
0
# Set bin width and range
bin_width = 0.20
Emax = 20
Nbins = int(np.ceil(Emax / bin_width))
Emax_adjusted = bin_width * Nbins  # Trick to get an integer number of bins
bins = np.linspace(0, Emax_adjusted, Nbins + 1)

# Define list of calculation input files and corresponding label names
inputfile = ""

# Instantiate figure which we will fill
f_rho, ax_rho = plt.subplots(1, 1)

# Read energy levels from file
levels = smutil.read_energy_levels(inputfile)

# Calculate level density
rho = smutil.total_level_density(levels, bin_width, Emax)

# Plot it
ax_rho.step(bins, np.append(0, rho), where='pre', label="Level density")

# Make the plot nice
ax_rho.set_yscale('log')
ax_rho.set_xlabel(r'$E_x \, \mathrm{(MeV)}$')
ax_rho.set_ylabel(r'$\rho \, \mathrm{(MeV^{-1})}$')
ax_rho.legend()

# Show plot
plt.show()
예제 #2
0
    def run(self, spe_tbme):
        # Add some test in case spe_tbme is a Theano tensor?
        # print type(spe_tbme)
        # print spe_tbme.ndim
        # if type(spe_tbme) == "<class 'theano.tensor.var.TensorVariable'>":
        #     print "Oh hello"
        #     Nspetbme = spe_tbme.ndim
        # else:
        #     Nspetbme = len(spe_tbme)

        # calc_tbme_matrix = np.zeros((self.Ntot,self.Nspe+self.Ntbme))
        calc_dict = {}
        # print "From smensemble.run(): calc_tbme_matrix.shape =", calc_tbme_matrix.shape
        SPE = spe_tbme[0:self.Nspe]

        tbme_template = self.tbme_template
        # print "SPE =", SPE
        # TBME = np.copy(self.tbme_template)
        # print TBME[:,5]
        # print "spe_tbme =", spe_tbme
        # print "spe_tbme.shape =", spe_tbme.shape
        # TBME[:,5] = spe_tbme[self.Nspe:]
        # TBME_th = th.tensor.stack([tbme_template[0:5,:], spe_tbme[self.Nspe:].reshape((self.Ntbme,1))])
        TBME_input1 = th.tensor.dmatrix("TBME_input1")
        TBME_input1.tag.test_value = self.tbme_template[:, 0:5]
        # print "TBME_input1.tag.test_value.shape =", TBME_input1.tag.test_value.shape
        TBME_input2 = th.tensor.dvector("TBME_input2")
        TBME_input2.tag.test_value = np.random.rand(self.Ntbme)
        # print "TBME_input2.tag.test_value.shape =", TBME_input2.tag.test_value.shape
        TBME_th = th.tensor.concatenate(
            [TBME_input1,
             TBME_input2.reshape((TBME_input2.shape[0], 1))],
            axis=1)
        TBME_values = th.function([TBME_input1, TBME_input2], TBME_th)
        TBME = TBME_values(tbme_template[:, 0:5], spe_tbme[self.Nspe:])
        # Make new directory for each calculation to store everything
        os.chdir(self.fname_allstepsdir)
        fname_currentstepdir = "{:d}".format(
            int((np.abs(spe_tbme) *
                 np.linspace(1,
                             len(spe_tbme) + 1, len(spe_tbme))).sum() *
                1e25))  # Each folder is named by the sum of parameter values.
        # This is to make it identifiable so we don't rerun an
        # ensemble with the same parameters, e.g. for taking
        # the gradient. It may be a stupid way to do it, suggestions
        # welcome.
        if not os.path.exists(fname_currentstepdir):
            os.makedirs(fname_currentstepdir)
        os.chdir(fname_currentstepdir)

        # Write interaction file:
        # print self.mass_scaling, self.scaling_A0, self.scaling_p
        smutil.write_interaction_file_msdict(
            "interaction.snt",
            SPE,
            TBME,
            self.model_space,
            self.core,
            comments="Autogenerated by ShellModelEnsemble class.",
            mass_scaling=self.mass_scaling,
            scaling_A0=self.scaling_A0,
            scaling_p=self.scaling_p)

        i_level = 0
        for nucleusName, nucleusAttr in self.nucleiList.items():
            rundirName = "{:s}".format(
                nucleusName
            )  # Temporary directory where KSHELL runs for current nucleus, e.g. O18
            outputFilename = "summary_{:s}.txt".format(
                nucleusName
            )  # The name of the summary file for current nucleus that we want to keep by moving it up
            # outputFilenameFinal =    "summary-{:s}.txt".format(nucleusName) # TODO remove if not needed
            # nucleusSMC = smcalc.shellmodelcalculation(nucleusName,
            # A=nucleusAttr["A"], Z=nucleusAttr["Z"],
            # levels=nucleusAttr["levels"],
            # truncation=nucleusAttr["truncation"],
            # core=self.core, model_space=self.model_space, SPE=SPE,
            # TBME=TBME, kshell_dir=KSHELL_DIR, calc_tbme=True,
            # ensemble_run=True)
            nucleusSMC = smcalc.shellmodelcalculation(
                nucleusName,
                A=nucleusAttr["A"],
                Z=nucleusAttr["Z"],
                levels=nucleusAttr["levels"],
                truncation=nucleusAttr["truncation"],
                core=self.core,
                model_space=self.model_space,
                SPE=SPE,
                TBME=TBME,
                kshell_dir=KSHELL_DIR,
                calc_tbme=True,
                ensemble_run=False)

            # Run calculation and extract spe&tbme expectation values, wrapped in some tests to avoid unnecessary steps:
            if os.path.isfile(
                    os.path.join(rundirName, outputFilename)
            ):  # If the rundir exists for current nucleus then we must
                try:  # It could be that the step was cancelled in the middle of this nucleus. So we try to catch the exception that the results file is not complete
                    # levels = smutil.read_energy_levels(os.path.join(rundirName, outputFilename))
                    calc_tbmes = smutil.read_calc_tbme(
                        os.path.join(rundirName, outputFilename),
                        self.tbme_template)
                    calc_E = smutil.read_energy_levels(
                        os.path.join(rundirName, outputFilename))
                except:  # If exception is raised then it means the output file is incomplete and we need to rerun this nucleus.
                    # nucleusSMC.run(is_mpi=self.is_mpi, n_restart_vec=n_restart_vec, max_lanc_vec=max_lanc_vec)
                    nucleusSMC.run(
                        is_mpi=self.is_mpi
                    )  #    n_restart_vec, max_lanc_vec set in initialization for tuning run
                    levels = smutil.read_energy_levels(
                        os.path.join(rundirName, outputFilename))
                    calc_tbmes = smutil.read_calc_tbme(
                        os.path.join(rundirName, outputFilename),
                        self.tbme_template)
                    calc_E = smutil.read_energy_levels(
                        os.path.join(rundirName, outputFilename))
                    shutil.copyfile(
                        os.path.join(rundirName,
                                     outputFilename), outputFilename
                    )  # Copy results file to current step directory and remove current rundir
                    shutil.rmtree(rundirName)
            elif os.path.isfile(
                    outputFilename
            ):  # The current nucleus has been completed, and the summary has been copied to outputFilenameFinal, which we then read
                # levels = smutil.read_energy_levels(outputFilename)
                calc_tbmes = smutil.read_calc_tbme(outputFilename,
                                                   self.tbme_template)
                calc_E = smutil.read_energy_levels(outputFilename)
            else:  # Nothing exists for this nucleus, so we run it from scratch
                # nucleusSMC.run(is_mpi=self.is_mpi, n_restart_vec=n_restart_vec, max_lanc_vec=max_lanc_vec)
                nucleusSMC.run(
                    is_mpi=self.is_mpi
                )  # n_restart_vec, max_lanc_vec set in initialization for tuning run
                # levels = smutil.read_energy_levels(os.path.join(rundirName, outputFilename))
                calc_tbmes = smutil.read_calc_tbme(
                    os.path.join(rundirName, outputFilename),
                    self.tbme_template)
                calc_E = smutil.read_energy_levels(
                    os.path.join(rundirName, outputFilename))
                # Copy summary file to current step directory and remove current rundir
                shutil.copyfile(os.path.join(rundirName, outputFilename),
                                outputFilename)
                #shutil.rmtree(rundirName) # May be commented out for debug

            # Transfer entries in calc_tbmes from current nucleus to total matrix for current run:
            # print calc_tbmes
            # for i in range(len(calc_tbmes[:,0])):
            #     calc_tbme_matrix[i_level,:] = calc_tbmes[i,:]
            #     i_level += 1
            calc_dict[nucleusName] = {
                "calc_tbme": calc_tbmes,
                "calc_E": calc_E
            }  # Make dictionary containing both energy levels and tbme expectation values for current nucleus.
            # calc_tbme have the same ordering as calc_E by construction

            # clean up
        os.chdir(
            "../../")  # Exit current fname_currentstepdir and steps folder

        # 20180116: Adding an option to remove the complete current fname_currentstepdir, to avoid using a lot of storage. This means all information we store is the PyMC3 trace. Not sure it's the best solution.
        # shutil.rmtree(os.path.join(self.fname_allstepsdir, fname_currentstepdir))

        return calc_dict