예제 #1
0
def test_curl2():
    # Test projection of curl

    K0 = Basis(N[0], 'C', bc=(0, 0))
    K1 = Basis(N[1], 'F', dtype='D')
    K2 = Basis(N[2], 'F', dtype='d')
    K3 = Basis(N[0], 'C')

    T = TensorProductSpace(comm, (K0, K1, K2))
    TT = TensorProductSpace(comm, (K3, K1, K2))
    X = T.local_mesh(True)
    K = T.local_wavenumbers(False)
    Tk = VectorTensorProductSpace(T)
    TTk = MixedTensorProductSpace([T, T, TT])

    U = Array(Tk)
    U_hat = Function(Tk)
    curl_hat = Function(TTk)
    curl_ = Array(TTk)

    # Initialize a Taylor Green vortex
    U[0] = np.sin(X[0]) * np.cos(X[1]) * np.cos(X[2]) * (1 - X[0]**2)
    U[1] = -np.cos(X[0]) * np.sin(X[1]) * np.cos(X[2]) * (1 - X[0]**2)
    U[2] = 0
    U_hat = Tk.forward(U, U_hat)
    Uc = U_hat.copy()
    U = Tk.backward(U_hat, U)
    U_hat = Tk.forward(U, U_hat)
    assert allclose(U_hat, Uc)

    # Compute curl first by computing each term individually
    curl_hat[0] = 1j * (K[1] * U_hat[2] - K[2] * U_hat[1])
    curl_[0] = T.backward(
        curl_hat[0], curl_[0])  # No x-derivatives, still in Dirichlet space
    dwdx_hat = project(Dx(U_hat[2], 0, 1), TT)  # Need to use space without bc
    dvdx_hat = project(Dx(U_hat[1], 0, 1), TT)  # Need to use space without bc
    dwdx = Array(TT)
    dvdx = Array(TT)
    dwdx = TT.backward(dwdx_hat, dwdx)
    dvdx = TT.backward(dvdx_hat, dvdx)
    curl_hat[1] = 1j * K[2] * U_hat[0]
    curl_hat[2] = -1j * K[1] * U_hat[0]
    curl_[1] = T.backward(curl_hat[1], curl_[1])
    curl_[2] = T.backward(curl_hat[2], curl_[2])
    curl_[1] -= dwdx
    curl_[2] += dvdx

    # Now do it with project
    w_hat = project(curl(U_hat), TTk)
    w = Array(TTk)
    w = TTk.backward(w_hat, w)
    assert allclose(w, curl_)
예제 #2
0
def test_mixed_2D(backend, forward_output, as_scalar):
    if (backend == 'netcdf4' and forward_output is True) or skip[backend]:
        return
    K0 = FunctionSpace(N[0], 'F')
    K1 = FunctionSpace(N[1], 'C')
    T = TensorProductSpace(comm, (K0, K1))
    TT = MixedTensorProductSpace([T, T])
    filename = 'test2Dm_{}'.format(ex[forward_output])
    hfile = writer(filename, TT, backend=backend)
    if forward_output:
        uf = Function(TT, val=2)
    else:
        uf = Array(TT, val=2)
    hfile.write(0, {'uf': [uf]}, as_scalar=as_scalar)
    hfile.write(1, {'uf': [uf]}, as_scalar=as_scalar)
    if not forward_output and backend == 'hdf5' and comm.Get_rank() == 0:
        generate_xdmf(filename + '.h5')
    if as_scalar is False:
        u0 = Function(TT) if forward_output else Array(TT)
        read = reader(filename, TT, backend=backend)
        read.read(u0, 'uf', step=1)
        assert np.allclose(u0, uf)
    else:
        u0 = Function(T) if forward_output else Array(T)
        read = reader(filename, T, backend=backend)
        read.read(u0, 'uf0', step=1)
        assert np.allclose(u0, uf[0])
예제 #3
0
def get_context():
    float, complex, mpitype = datatypes(params.precision)
    collapse_fourier = False if params.dealias == '3/2-rule' else True
    dim = len(params.N)
    dtype = lambda d: float if d == dim - 1 else complex
    V = [
        Basis(params.N[i], 'F', domain=(0, params.L[i]), dtype=dtype(i))
        for i in range(dim)
    ]

    kw0 = {
        'threads': params.threads,
        'planner_effort': params.planner_effort['fft']
    }
    T = TensorProductSpace(comm,
                           V,
                           dtype=float,
                           slab=(params.decomposition == 'slab'),
                           collapse_fourier=collapse_fourier,
                           **kw0)
    VT = VectorTensorProductSpace(T)
    VM = MixedTensorProductSpace([T] * 2 * dim)

    mask = T.mask_nyquist() if params.mask_nyquist else None

    kw = {
        'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
        'dealias_direct': params.dealias == '2/3-rule'
    }

    Vp = [
        Basis(params.N[i], 'F', domain=(0, params.L[i]), dtype=dtype(i), **kw)
        for i in range(dim)
    ]

    Tp = TensorProductSpace(comm,
                            Vp,
                            dtype=float,
                            slab=(params.decomposition == 'slab'),
                            collapse_fourier=collapse_fourier,
                            **kw0)
    VTp = VectorTensorProductSpace(Tp)
    VMp = MixedTensorProductSpace([Tp] * 2 * dim)

    # Mesh variables
    X = T.local_mesh(True)
    K = T.local_wavenumbers(scaled=True)
    for i in range(dim):
        X[i] = X[i].astype(float)
        K[i] = K[i].astype(float)
    K2 = np.zeros(T.shape(True), dtype=float)
    for i in range(dim):
        K2 += K[i] * K[i]

    # Set Nyquist frequency to zero on K that is, from now on, used for odd derivatives
    Kx = T.local_wavenumbers(scaled=True, eliminate_highest_freq=True)
    for i in range(dim):
        Kx[i] = Kx[i].astype(float)

    K_over_K2 = np.zeros(VT.shape(True), dtype=float)
    for i in range(dim):
        K_over_K2[i] = K[i] / np.where(K2 == 0, 1, K2)

    UB = Array(VM)
    P = Array(T)
    curl = Array(VT)
    UB_hat = Function(VM)
    P_hat = Function(T)
    dU = Function(VM)
    Source = Array(VM)
    ub_dealias = Array(VMp)
    ZZ_hat = np.zeros((3, 3) + Tp.shape(True), dtype=complex)  # Work array

    # Create views into large data structures
    U = UB[:3]
    U_hat = UB_hat[:3]
    B = UB[3:]
    B_hat = UB_hat[3:]

    # Primary variable
    u = UB_hat

    hdf5file = MHDFile(config.params.solver,
                       checkpoint={
                           'space': VM,
                           'data': {
                               '0': {
                                   'UB': [UB_hat]
                               }
                           }
                       },
                       results={
                           'space': VM,
                           'data': {
                               'UB': [UB]
                           }
                       })

    return config.AttributeDict(locals())
예제 #4
0
def test_transform(typecode, dim):
    s = (True, )
    if comm.Get_size() > 2 and dim > 2:
        s = (True, False)

    for slab in s:
        for shape in product(*([sizes] * dim)):
            bases = []
            for n in shape[:-1]:
                bases.append(Basis(n, 'F', dtype=typecode.upper()))
            bases.append(Basis(shape[-1], 'F', dtype=typecode))

            fft = TensorProductSpace(comm, bases, dtype=typecode, slab=slab)

            if comm.rank == 0:
                grid = [c.size for c in fft.subcomm]
                print('grid:{} shape:{} typecode:{}'.format(
                    grid, shape, typecode))

            U = random_like(fft.forward.input_array)

            F = fft.forward(U)
            V = fft.backward(F)
            assert allclose(V, U)

            # Alternative method
            fft.forward.input_array[...] = U
            fft.forward(fast_transform=False)
            fft.backward(fast_transform=False)
            V = fft.backward.output_array
            assert allclose(V, U)

            TT = VectorTensorProductSpace(fft)
            U = Array(TT)
            V = Array(TT)
            F = Function(TT)
            U[:] = random_like(U)
            F = TT.forward(U, F)
            V = TT.backward(F, V)
            assert allclose(V, U)

            TM = MixedTensorProductSpace([fft, fft])
            U = Array(TM)
            V = Array(TM)
            F = Function(TM)
            U[:] = random_like(U)
            F = TM.forward(U, F)
            V = TM.backward(F, V)
            assert allclose(V, U)

            fft.destroy()

            padding = 1.5
            bases = []
            for n in shape[:-1]:
                bases.append(
                    Basis(n,
                          'F',
                          dtype=typecode.upper(),
                          padding_factor=padding))
            bases.append(
                Basis(shape[-1], 'F', dtype=typecode, padding_factor=padding))

            fft = TensorProductSpace(comm, bases, dtype=typecode)

            if comm.rank == 0:
                grid = [c.size for c in fft.subcomm]
                print('grid:{} shape:{} typecode:{}'.format(
                    grid, shape, typecode))

            U = random_like(fft.forward.input_array)
            F = fft.forward(U)

            Fc = F.copy()
            V = fft.backward(F)
            F = fft.forward(V)
            assert allclose(F, Fc)

            # Alternative method
            fft.backward.input_array[...] = F
            fft.backward()
            fft.forward()
            V = fft.forward.output_array
            assert allclose(F, V)

            fft.destroy()
예제 #5
0
def get_context():
    """Set up context for Bq2D solver"""
    float, complex, mpitype = datatypes(params.precision)
    collapse_fourier = False if params.dealias == '3/2-rule' else True
    dim = len(params.N)
    dtype = lambda d: float if d == dim - 1 else complex
    V = [
        FunctionSpace(params.N[i],
                      'F',
                      domain=(0, params.L[i]),
                      dtype=dtype(i)) for i in range(dim)
    ]

    kw0 = {
        'threads': params.threads,
        'planner_effort': params.planner_effort['fft']
    }
    T = TensorProductSpace(comm,
                           V,
                           dtype=float,
                           slab=(params.decomposition == 'slab'),
                           collapse_fourier=collapse_fourier,
                           **kw0)
    VT = VectorTensorProductSpace(T)
    VM = MixedTensorProductSpace([T] * (dim + 1))

    mask = T.get_mask_nyquist() if params.mask_nyquist else None

    kw = {
        'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
        'dealias_direct': params.dealias == '2/3-rule'
    }

    Vp = [
        FunctionSpace(params.N[i],
                      'F',
                      domain=(0, params.L[i]),
                      dtype=dtype(i),
                      **kw) for i in range(dim)
    ]

    Tp = TensorProductSpace(comm,
                            Vp,
                            dtype=float,
                            slab=(params.decomposition == 'slab'),
                            collapse_fourier=collapse_fourier,
                            **kw0)
    VTp = VectorTensorProductSpace(Tp)
    VMp = MixedTensorProductSpace([Tp] * (dim + 1))

    # Mesh variables
    X = T.local_mesh(True)
    K = T.local_wavenumbers(scaled=True)
    for i in range(dim):
        X[i] = X[i].astype(float)
        K[i] = K[i].astype(float)
    K2 = np.zeros(T.shape(True), dtype=float)
    for i in range(dim):
        K2 += K[i] * K[i]

    K_over_K2 = np.zeros(VT.shape(True), dtype=float)
    for i in range(dim):
        K_over_K2[i] = K[i] / np.where(K2 == 0, 1, K2)

    # Solution variables
    Ur = Array(VM)
    Ur_hat = Function(VM)
    P = Array(T)
    P_hat = Function(T)
    curl = Array(T)
    W_hat = Function(T)
    ur_dealias = Array(VMp)

    # Create views into large data structures
    rho = Ur[2]
    rho_hat = Ur_hat[2]
    U = Ur[:2]
    U_hat = Ur_hat[:2]

    # Primary variable
    u = Ur_hat

    # RHS and work arrays
    dU = Function(VM)
    work = work_arrays()

    hdf5file = BqFile(config.params.solver,
                      checkpoint={
                          'space': VM,
                          'data': {
                              '0': {
                                  'Ur': [Ur_hat]
                              }
                          }
                      },
                      results={
                          'space': VM,
                          'data': {
                              'UR': [Ur]
                          }
                      })

    return config.AttributeDict(locals())
예제 #6
0
파일: KMM.py 프로젝트: minhbau/spectralDNS
def get_context():
    """Set up context for solver"""

    # Get points and weights for Chebyshev weighted integrals
    assert params.Dquad == params.Bquad
    collapse_fourier = False if params.dealias == '3/2-rule' else True
    ST = Basis(params.N[0], 'C', bc=(0, 0), quad=params.Dquad)
    SB = Basis(params.N[0], 'C', bc='Biharmonic', quad=params.Bquad)
    CT = Basis(params.N[0], 'C', quad=params.Dquad)
    ST0 = Basis(params.N[0], 'C', bc=(0, 0), quad=params.Dquad) # For 1D problem
    K0 = Basis(params.N[1], 'F', domain=(0, params.L[1]), dtype='D')
    K1 = Basis(params.N[2], 'F', domain=(0, params.L[2]), dtype='d')

    kw0 = {'threads': params.threads,
           'planner_effort': params.planner_effort["dct"],
           'slab': (params.decomposition == 'slab'),
           'collapse_fourier': collapse_fourier}
    FST = TensorProductSpace(comm, (ST, K0, K1), **kw0)    # Dirichlet
    FSB = TensorProductSpace(comm, (SB, K0, K1), **kw0)    # Biharmonic
    FCT = TensorProductSpace(comm, (CT, K0, K1), **kw0)    # Regular Chebyshev
    VFS = VectorTensorProductSpace([FSB, FST, FST])
    VFST = VectorTensorProductSpace([FST, FST, FST])
    VUG = MixedTensorProductSpace([FSB, FST])
    VCT = VectorTensorProductSpace(FCT)

    mask = FST.get_mask_nyquist() if params.mask_nyquist else None

    # Padded
    kw = {'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
          'dealias_direct': params.dealias == '2/3-rule'}
    if params.dealias == '3/2-rule':
        # Requires new bases due to planning and transforms on different size arrays
        STp = Basis(params.N[0], 'C', bc=(0, 0), quad=params.Dquad)
        SBp = Basis(params.N[0], 'C', bc='Biharmonic', quad=params.Bquad)
        CTp = Basis(params.N[0], 'C', quad=params.Dquad)
    else:
        STp, SBp, CTp = ST, SB, CT
    K0p = Basis(params.N[1], 'F', dtype='D', domain=(0, params.L[1]), **kw)
    K1p = Basis(params.N[2], 'F', dtype='d', domain=(0, params.L[2]), **kw)
    FSTp = TensorProductSpace(comm, (STp, K0p, K1p), **kw0)
    FSBp = TensorProductSpace(comm, (SBp, K0p, K1p), **kw0)
    FCTp = TensorProductSpace(comm, (CTp, K0p, K1p), **kw0)
    VFSp = VectorTensorProductSpace([FSBp, FSTp, FSTp])

    float, complex, mpitype = datatypes("double")

    # Mesh variables
    X = FST.local_mesh(True)
    x0, x1, x2 = FST.mesh()
    K = FST.local_wavenumbers(scaled=True)

    # Solution variables
    U = Array(VFS)
    U0 = Array(VFS)
    U_hat = Function(VFS)
    U_hat0 = Function(VFS)
    g = Function(FST)

    # primary variable
    u = (U_hat, g)

    H_hat = Function(VFST)
    H_hat0 = Function(VFST)
    H_hat1 = Function(VFST)

    dU = Function(VFS)
    hv = Function(FSB)
    hg = Function(FST)
    Source = Array(VFS)
    Sk = Function(VFS)

    K2 = K[1]*K[1]+K[2]*K[2]
    K4 = K2**2

    K_over_K2 = np.zeros((2,)+g.shape)
    for i in range(2):
        K_over_K2[i] = K[i+1] / np.where(K2 == 0, 1, K2)

    for i in range(3):
        K[i] = K[i].astype(float)

    work = work_arrays()
    u_dealias = Array(VFSp)
    u0_hat = np.zeros((2, params.N[0]), dtype=complex)
    h0_hat = np.zeros((2, params.N[0]), dtype=complex)
    w = np.zeros((params.N[0], ), dtype=complex)
    w1 = np.zeros((params.N[0], ), dtype=complex)

    nu, dt, N = params.nu, params.dt, params.N

    alfa = K2[0] - 2.0/nu/dt
    # Collect all matrices
    mat = config.AttributeDict(
        dict(CDD=inner_product((ST, 0), (ST, 1)),
             AB=HelmholtzCoeff(N[0], 1., -(K2 - 2.0/nu/dt), 0, ST.quad),
             AC=BiharmonicCoeff(N[0], nu*dt/2., (1. - nu*dt*K2), -(K2 - nu*dt/2.*K4), 0, SB.quad),
             # Matrices for biharmonic equation
             CBD=inner_product((SB, 0), (ST, 1)),
             ABB=inner_product((SB, 0), (SB, 2)),
             BBB=inner_product((SB, 0), (SB, 0)),
             SBB=inner_product((SB, 0), (SB, 4)),
             # Matrices for Helmholtz equation
             ADD=inner_product((ST, 0), (ST, 2)),
             BDD=inner_product((ST, 0), (ST, 0)),
             BBD=inner_product((SB, 0), (ST, 0)),
             CDB=inner_product((ST, 0), (SB, 1)),
             ADD0=inner_product((ST0, 0), (ST0, 2)),
             BDD0=inner_product((ST0, 0), (ST0, 0)),))

    la = config.AttributeDict(
        dict(HelmholtzSolverG=Helmholtz(mat.ADD, mat.BDD, -np.ones((1, 1, 1)),
                                        (K2+2.0/nu/dt)),
             BiharmonicSolverU=Biharmonic(mat.SBB, mat.ABB, mat.BBB, -nu*dt/2.*np.ones((1, 1, 1)),
                                          (1.+nu*dt*K2),
                                          (-(K2 + nu*dt/2.*K4))),
             HelmholtzSolverU0=Helmholtz(mat.ADD0, mat.BDD0, np.array([-1.]), np.array([2./nu/dt])),
             TDMASolverD=TDMA(inner_product((ST, 0), (ST, 0)))))

    hdf5file = KMMFile(config.params.solver,
                       checkpoint={'space': VFS,
                                   'data': {'0': {'U': [U_hat]},
                                            '1': {'U': [U_hat0]}}},
                       results={'space': VFS,
                                'data': {'U': [U]}})

    return config.AttributeDict(locals())
예제 #7
0
def get_context():
    """Set up context for solver"""

    # Get points and weights for Chebyshev weighted integrals
    assert params.Dquad == params.Bquad
    collapse_fourier = False if params.dealias == '3/2-rule' else True
    ST = Basis(params.N[0], 'C', bc=(0, 0), quad=params.Dquad)
    CT = Basis(params.N[0], 'C', quad=params.Dquad)
    CP = Basis(params.N[0], 'C', quad=params.Dquad)
    K0 = Basis(params.N[1], 'F', domain=(0, params.L[1]), dtype='D')
    K1 = Basis(params.N[2], 'F', domain=(0, params.L[2]), dtype='d')
    CP.slice = lambda: slice(0, CT.N)

    kw0 = {'threads': params.threads,
           'planner_effort': params.planner_effort["dct"],
           'slab': (params.decomposition == 'slab'),
           'collapse_fourier': collapse_fourier}
    FST = TensorProductSpace(comm, (ST, K0, K1), **kw0)    # Dirichlet
    FCT = TensorProductSpace(comm, (CT, K0, K1), **kw0)    # Regular Chebyshev N
    FCP = TensorProductSpace(comm, (CP, K0, K1), **kw0)    # Regular Chebyshev N-2
    VFS = VectorTensorProductSpace(FST)
    VCT = VectorTensorProductSpace(FCT)
    VQ = MixedTensorProductSpace([VFS, FCP])

    mask = FST.get_mask_nyquist() if params.mask_nyquist else None

    # Padded
    kw = {'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
          'dealias_direct': params.dealias == '2/3-rule'}
    if params.dealias == '3/2-rule':
        # Requires new bases due to planning and transforms on different size arrays
        STp = Basis(params.N[0], 'C', bc=(0, 0), quad=params.Dquad)
        CTp = Basis(params.N[0], 'C', quad=params.Dquad)
    else:
        STp, CTp = ST, CT
    K0p = Basis(params.N[1], 'F', dtype='D', domain=(0, params.L[1]), **kw)
    K1p = Basis(params.N[2], 'F', dtype='d', domain=(0, params.L[2]), **kw)
    FSTp = TensorProductSpace(comm, (STp, K0p, K1p), **kw0)
    FCTp = TensorProductSpace(comm, (CTp, K0p, K1p), **kw0)
    VFSp = VectorTensorProductSpace(FSTp)
    VCp = MixedTensorProductSpace([FSTp, FCTp, FCTp])

    float, complex, mpitype = datatypes("double")

    constraints = ((3, 0, 0),
                   (3, params.N[0]-1, 0))

    # Mesh variables
    X = FST.local_mesh(True)
    x0, x1, x2 = FST.mesh()
    K = FST.local_wavenumbers(scaled=True)

    # Solution variables
    UP_hat = Function(VQ)
    UP_hat0 = Function(VQ)
    U_hat, P_hat = UP_hat
    U_hat0, P_hat0 = UP_hat0

    UP = Array(VQ)
    UP0 = Array(VQ)
    U, P = UP
    U0, P0 = UP0

    # primary variable
    u = UP_hat

    H_hat = Function(VFS)
    H_hat0 = Function(VFS)
    H_hat1 = Function(VFS)

    dU = Function(VQ)
    Source = Array(VFS) # Note - not using VQ. Only used for constant pressure gradient
    Sk = Function(VFS)

    K2 = K[1]*K[1]+K[2]*K[2]

    for i in range(3):
        K[i] = K[i].astype(float)

    work = work_arrays()
    u_dealias = Array(VFSp)
    curl_hat = Function(VCp)
    curl_dealias = Array(VCp)

    nu, dt, N = params.nu, params.dt, params.N

    up = TrialFunction(VQ)
    vq = TestFunction(VQ)

    ut, pt = up
    vt, qt = vq

    alfa = 2./nu/dt
    a0 = inner(vt, (2./nu/dt)*ut-div(grad(ut)))
    a1 = inner(vt, (2./nu)*grad(pt))
    a2 = inner(qt, (2./nu)*div(ut))

    M = BlockMatrix(a0+a1+a2)

    # Collect all matrices
    mat = config.AttributeDict(
        dict(CDD=inner_product((ST, 0), (ST, 1)),
             AB=HelmholtzCoeff(N[0], 1., alfa-K2, 0, ST.quad),))

    la = None

    hdf5file = CoupledFile(config.params.solver,
                        checkpoint={'space': VQ,
                                    'data': {'0': {'UP': [UP_hat]},
                                             '1': {'UP': [UP_hat0]}}},
                        results={'space': VFS,
                                 'data': {'U': [U]}})

    return config.AttributeDict(locals())
예제 #8
0
def get_context():
    """Set up context for solver"""

    # Get points and weights for Chebyshev weighted integrals
    assert params.Dquad == params.Bquad
    ST = Basis(params.N[0], 'C', bc=(0, 0), quad=params.Dquad)
    SB = Basis(params.N[0], 'C', bc='Biharmonic', quad=params.Bquad)
    CT = Basis(params.N[0], 'C', quad=params.Dquad)
    ST0 = Basis(params.N[0], 'C', bc=(0, 0),
                quad=params.Dquad)  # For 1D problem
    K0 = Basis(params.N[1], 'F', domain=(0, params.L[1]), dtype='D')
    K1 = Basis(params.N[2], 'F', domain=(0, params.L[2]), dtype='d')

    kw0 = {
        'threads': params.threads,
        'planner_effort': params.planner_effort["dct"]
    }
    FST = TensorProductSpace(comm, (ST, K0, K1),
                             axes=(0, 1, 2),
                             collapse_fourier=False,
                             **kw0)  # Dirichlet
    FSB = TensorProductSpace(comm, (SB, K0, K1),
                             axes=(0, 1, 2),
                             collapse_fourier=False,
                             **kw0)  # Biharmonic
    FCT = TensorProductSpace(comm, (CT, K0, K1),
                             axes=(0, 1, 2),
                             collapse_fourier=False,
                             **kw0)  # Regular Chebyshev
    VFS = MixedTensorProductSpace([FSB, FST, FST])
    VUG = MixedTensorProductSpace([FSB, FST])

    # Padded
    kw = {
        'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
        'dealias_direct': params.dealias == '2/3-rule'
    }
    if params.dealias == '3/2-rule':
        # Requires new bases due to planning and transforms on different size arrays
        STp = Basis(params.N[0], 'C', bc=(0, 0), quad=params.Dquad)
        SBp = Basis(params.N[0], 'C', bc='Biharmonic', quad=params.Bquad)
        CTp = Basis(params.N[0], 'C', quad=params.Dquad)
    else:
        STp, SBp, CTp = ST, SB, CT
    K0p = Basis(params.N[1], 'F', dtype='D', domain=(0, params.L[1]), **kw)
    K1p = Basis(params.N[2], 'F', dtype='d', domain=(0, params.L[2]), **kw)
    FSTp = TensorProductSpace(comm, (STp, K0p, K1p),
                              axes=(0, 1, 2),
                              collapse_fourier=False,
                              **kw0)
    FSBp = TensorProductSpace(comm, (SBp, K0p, K1p),
                              axes=(0, 1, 2),
                              collapse_fourier=False,
                              **kw0)
    FCTp = TensorProductSpace(comm, (CTp, K0p, K1p),
                              axes=(0, 1, 2),
                              collapse_fourier=False,
                              **kw0)
    VFSp = MixedTensorProductSpace([FSBp, FSTp, FSTp])

    Nu = params.N[0] - 2  # Number of velocity modes in Shen basis
    Nb = params.N[0] - 4  # Number of velocity modes in Shen biharmonic basis
    u_slice = slice(0, Nu)
    v_slice = slice(0, Nb)

    float, complex, mpitype = datatypes("double")

    # Mesh variables
    X = FST.local_mesh(True)
    x0, x1, x2 = FST.mesh()
    K = FST.local_wavenumbers(scaled=True)

    # Solution variables
    U = Array(VFS)
    U0 = Array(VFS)
    U_hat = Function(VFS)
    U_hat0 = Function(VFS)
    g = Function(FST)

    # primary variable
    u = (U_hat, g)

    H_hat = Function(VFS)
    H_hat0 = Function(VFS)
    H_hat1 = Function(VFS)

    dU = Function(VUG)
    hv = Function(FST)
    hg = Function(FST)
    Source = Array(VFS)
    Sk = Function(VFS)

    K2 = K[1] * K[1] + K[2] * K[2]
    K4 = K2**2

    # Set Nyquist frequency to zero on K that is used for odd derivatives in nonlinear terms
    Kx = FST.local_wavenumbers(scaled=True, eliminate_highest_freq=True)
    K_over_K2 = np.zeros((2, ) + g.shape)
    for i in range(2):
        K_over_K2[i] = K[i + 1] / np.where(K2 == 0, 1, K2)

    work = work_arrays()

    nu, dt, N = params.nu, params.dt, params.N

    alfa = K2[0] - 2.0 / nu / dt
    # Collect all matrices
    mat = config.AttributeDict(
        dict(
            CDD=inner_product((ST, 0), (ST, 1)),
            AB=HelmholtzCoeff(N[0], 1.0, -(K2 - 2.0 / nu / dt), ST.quad),
            AC=BiharmonicCoeff(N[0],
                               nu * dt / 2., (1. - nu * dt * K2),
                               -(K2 - nu * dt / 2. * K4),
                               quad=SB.quad),
            # Matrices for biharmonic equation
            CBD=inner_product((SB, 0), (ST, 1)),
            ABB=inner_product((SB, 0), (SB, 2)),
            BBB=inner_product((SB, 0), (SB, 0)),
            SBB=inner_product((SB, 0), (SB, 4)),
            # Matrices for Helmholtz equation
            ADD=inner_product((ST, 0), (ST, 2)),
            BDD=inner_product((ST, 0), (ST, 0)),
            BBD=inner_product((SB, 0), (ST, 0)),
            CDB=inner_product((ST, 0), (SB, 1)),
            ADD0=inner_product((ST0, 0), (ST0, 2)),
            BDD0=inner_product((ST0, 0), (ST0, 0)),
        ))

    ## Collect all linear algebra solvers
    #la = config.AttributeDict(dict(
    #HelmholtzSolverG = old_Helmholtz(N[0], np.sqrt(K2[0]+2.0/nu/dt), ST),
    #BiharmonicSolverU = old_Biharmonic(N[0], -nu*dt/2., 1.+nu*dt*K2[0],
    #-(K2[0] + nu*dt/2.*K4[0]), quad=SB.quad,
    #solver="cython"),
    #HelmholtzSolverU0 = old_Helmholtz(N[0], np.sqrt(2./nu/dt), ST),
    #TDMASolverD = TDMA(inner_product((ST, 0), (ST, 0)))
    #)
    #)

    mat.ADD.axis = 0
    mat.BDD.axis = 0
    mat.SBB.axis = 0

    la = config.AttributeDict(
        dict(HelmholtzSolverG=Helmholtz(mat.ADD, mat.BDD, -np.ones(
            (1, 1, 1)), (K2[0] + 2.0 / nu / dt)[np.newaxis, :, :]),
             BiharmonicSolverU=Biharmonic(
                 mat.SBB, mat.ABB, mat.BBB, -nu * dt / 2. * np.ones(
                     (1, 1, 1)), (1. + nu * dt * K2[0])[np.newaxis, :, :],
                 (-(K2[0] + nu * dt / 2. * K4[0]))[np.newaxis, :, :]),
             HelmholtzSolverU0=Helmholtz(mat.ADD0, mat.BDD0, np.array([-1.]),
                                         np.array([2. / nu / dt])),
             TDMASolverD=TDMA(inner_product((ST, 0), (ST, 0)))))

    hdf5file = KMMWriter({
        "U": U[0],
        "V": U[1],
        "W": U[2]
    },
                         chkpoint={
                             'current': {
                                 'U': U
                             },
                             'previous': {
                                 'U': U0
                             }
                         },
                         filename=params.solver + ".h5",
                         mesh={
                             "x": x0,
                             "y": x1,
                             "z": x2
                         })

    return config.AttributeDict(locals())
예제 #9
0
def get_context():
    """Set up context for solver"""

    collapse_fourier = False if params.dealias == '3/2-rule' else True
    family = 'C'
    ST = Basis(params.N[0], family, bc=(0, 0), quad=params.Dquad)
    CT = Basis(params.N[0], family, quad=params.Dquad)
    CP = Basis(params.N[0], family, quad=params.Dquad)
    K0 = Basis(params.N[1], 'F', domain=(0, params.L[1]), dtype='D')
    K1 = Basis(params.N[2], 'F', domain=(0, params.L[2]), dtype='d')
    #CP.slice = lambda: slice(0, CP.N-2)

    constraints = ((3, 0, 0),
                   (3, params.N[0]-1, 0))

    kw0 = {'threads': params.threads,
           'planner_effort': params.planner_effort["dct"],
           'slab': (params.decomposition == 'slab'),
           'collapse_fourier': collapse_fourier}
    FST = TensorProductSpace(comm, (ST, K0, K1), **kw0)    # Dirichlet
    FCT = TensorProductSpace(comm, (CT, K0, K1), **kw0)    # Regular Chebyshev N
    FCP = TensorProductSpace(comm, (CP, K0, K1), **kw0)    # Regular Chebyshev N-2
    VFS = VectorTensorProductSpace(FST)
    VCT = VectorTensorProductSpace(FCT)
    VQ = MixedTensorProductSpace([VFS, FCP])

    mask = FST.mask_nyquist() if params.mask_nyquist else None

    # Padded
    kw = {'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
          'dealias_direct': params.dealias == '2/3-rule'}
    if params.dealias == '3/2-rule':
        # Requires new bases due to planning and transforms on different size arrays
        STp = Basis(params.N[0], family, bc=(0, 0), quad=params.Dquad)
        CTp = Basis(params.N[0], family, quad=params.Dquad)
    else:
        STp, CTp = ST, CT
    K0p = Basis(params.N[1], 'F', dtype='D', domain=(0, params.L[1]), **kw)
    K1p = Basis(params.N[2], 'F', dtype='d', domain=(0, params.L[2]), **kw)
    FSTp = TensorProductSpace(comm, (STp, K0p, K1p), **kw0)
    FCTp = TensorProductSpace(comm, (CTp, K0p, K1p), **kw0)
    VFSp = VectorTensorProductSpace(FSTp)
    VCp = MixedTensorProductSpace([FSTp, FCTp, FCTp])

    float, complex, mpitype = datatypes("double")

    # Mesh variables
    X = FST.local_mesh(True)
    x0, x1, x2 = FST.mesh()
    K = FST.local_wavenumbers(scaled=True)

    # Solution variables
    UP_hat = Function(VQ)
    UP_hat0 = Function(VQ)
    U_hat, P_hat = UP_hat
    U_hat0, P_hat0 = UP_hat0

    UP = Array(VQ)
    UP0 = Array(VQ)
    U, P = UP
    U0, P0 = UP0

    # RK parameters
    a = (8./15., 5./12., 3./4.)
    b = (0.0, -17./60., -5./12.)

    # primary variable
    u = UP_hat

    H_hat = Function(VFS)

    dU = Function(VQ)
    hv = np.zeros((2,)+H_hat.shape, dtype=np.complex)

    Source = Array(VFS) # Note - not using VQ. Only used for constant pressure gradient
    Sk = Function(VFS)

    K2 = K[1]*K[1]+K[2]*K[2]

    # Set Nyquist frequency to zero on K that is used for odd derivatives in nonlinear terms
    Kx = FST.local_wavenumbers(scaled=True, eliminate_highest_freq=True)

    for i in range(3):
        K[i] = K[i].astype(float)
        Kx[i] = Kx[i].astype(float)

    work = work_arrays()
    u_dealias = Array(VFSp)
    curl_hat = Function(VCp)
    curl_dealias = Array(VCp)

    nu, dt, N = params.nu, params.dt, params.N

    up = TrialFunction(VQ)
    vq = TestFunction(VQ)

    ut, pt = up
    vt, qt = vq

    M = []
    for rk in range(3):
        a0 = inner(vt, (2./nu/dt/(a[rk]+b[rk]))*ut-div(grad(ut)))
        a1 = inner(vt, (2./nu/(a[rk]+b[rk]))*grad(pt))
        a2 = inner(qt, (2./nu/(a[rk]+b[rk]))*div(ut))
        M.append(BlockMatrix(a0+a1+a2))

    # Collect all matrices
    if ST.family() == 'chebyshev':
        mat = config.AttributeDict(
            dict(AB=[HelmholtzCoeff(N[0], 1., -(K2 - 2./nu/dt/(a[rk]+b[rk])), 0, ST.quad) for rk in range(3)],))
    else:
        mat = config.AttributeDict(
            dict(ADD=inner_product((ST, 0), (ST, 2)),
                 BDD=inner_product((ST, 0), (ST, 0)))
        )

    la = None

    hdf5file = CoupledRK3File(config.params.solver,
                        checkpoint={'space': VQ,
                                    'data': {'0': {'UP': [UP_hat]}}},
                        results={'space': VFS,
                                 'data': {'U': [U]}})

    del rk
    return config.AttributeDict(locals())