'_' + lang + '.pkl', 'wb')) pickle.dump(kmeans, open(str(num_phones) + '_' + lang + \ '/kmeans_' + str(num_phones) + \ '_' + lang + '.pkl', 'wb')) all_features = {} # get bottleneck features of all .wav files (stimuli) for root, dirs, files in os.walk(WAV_FOLDER): for wav_file in files: if wav_file.endswith(".wav"): audio = Audio.load(root + wav_file) all_features[wav_file] = audio processor = BottleneckProcessor(weights='BabelMulti') corpus_features = processor.process_all(all_features) open_feats = [] for key in corpus_features: # access every features object feats = corpus_features[key].data # put them all together open_feats.append(feats) unlisted_feats = np.asarray(open_feats) #flattened_feats = np.concatenate(all_corpus_features, axis=0) flattened_feats = np.concatenate(unlisted_feats) # idx = (3,6,9) # flattened_feats = np.insert(flattened_feats, idx, 0, axis=1) print flattened_feats.shape for NUM_PHONES in list(NUM_PHONES_LIST):
# clustered = kmeans_corpus.fit_predict(stim_pqcode) np.save(to_folder + utterance_n, softmax_stim) #dist_df = pd.DataFrame(softmax_stim) #dist_df.to_csv(to_folder + utterance_n + '.csv') all_features = {} # get bottleneck features of all .wav files (stimuli) for root, dirs, files in os.walk(WAV_FOLDER): for wav_file in files: if wav_file.endswith(".wav"): audio = Audio.load(root + wav_file) all_features[wav_file] = audio processor = BottleneckProcessor(weights='BabelMulti') stim_features = processor.process_all(all_features) # dict_feats = {} # for key in stim_features: # # access every features object # feats = stim_features[key].data # # put them all together # dict_feats[key] = feats for root_p, dirs_p, files_ in pickles_folder: for dir_p in dirs_p: if dir_p == 'softmax_dist': pass else: PATH = root_p + dir_p NUM = dir_p.split('_')[0]