예제 #1
0
 def get_audio_power(self):
     if self.get_is_valid():
         return to_dB(
             max(_audio_power_minimum_amplitude, self.probe_audio.level()))
     else:
         # will not be receiving samples, so probe's value will be meaningless
         return _audio_power_minimum_dB
예제 #2
0
파일: blocks.py 프로젝트: b8box/shinysdr
    def __rebuild(self):
        if self.__signal_type.is_analytic():
            input_length = self.__freq_resolution
            output_length = self.__freq_resolution
            self.__after_fft = None
        else:
            # use vector_to_streams to cut the output in half and discard the redundant part
            input_length = self.__freq_resolution * 2
            output_length = self.__freq_resolution
            self.__after_fft = blocks.vector_to_streams(
                itemsize=output_length * gr.sizeof_float, nstreams=2)

        sample_rate = self.__signal_type.get_sample_rate()
        overlap_factor = int(
            math.ceil(_maximum_fft_rate * input_length / sample_rate))
        # sanity limit -- OverlapGimmick is not free
        overlap_factor = min(16, overlap_factor)

        self.__gate = blocks.copy(gr.sizeof_gr_complex)
        self.__gate.set_enabled(not self.__paused)

        self.__fft_sink = MessageDistributorSink(
            itemsize=output_length * gr.sizeof_char,
            context=self.__context,
            migrate=self.__fft_sink,
            notify=self.__update_interested)
        self.__overlapper = _OverlapGimmick(size=input_length,
                                            factor=overlap_factor,
                                            itemsize=self.__itemsize)

        # Adjusts units so displayed level is independent of resolution and sample rate. Also throw in the packing offset
        compensation = to_dB(input_length / sample_rate) + self.__power_offset
        # TODO: Consider not using the logpwrfft block

        self.__logpwrfft = logpwrfft.logpwrfft_c(
            sample_rate=sample_rate * overlap_factor,
            fft_size=input_length,
            ref_scale=10.0**(-compensation / 20.0) *
            2,  # not actually using this as a reference scale value but avoiding needing to use a separate add operation to apply the unit change -- this expression is the inverse of what logpwrfft does internally
            frame_rate=self.__frame_rate,
            avg_alpha=1.0,
            average=False)
        # It would make slightly more sense to use unsigned chars, but blocks.float_to_uchar does not support vlen.
        self.__fft_converter = blocks.float_to_char(
            vlen=self.__freq_resolution, scale=1.0)

        self.__scope_sink = MessageDistributorSink(
            itemsize=self.__time_length * gr.sizeof_gr_complex,
            context=self.__context,
            migrate=self.__scope_sink,
            notify=self.__update_interested)
        self.__scope_chunker = blocks.stream_to_vector_decimator(
            item_size=gr.sizeof_gr_complex,
            sample_rate=sample_rate,
            vec_rate=self.__frame_rate,  # TODO doesn't need to be coupled
            vec_len=self.__time_length)
예제 #3
0
 def __rebuild(self):
     if self.__signal_type.is_analytic():
         input_length = self.__freq_resolution
         output_length = self.__freq_resolution
         self.__after_fft = None
     else:
         # use vector_to_streams to cut the output in half and discard the redundant part
         input_length = self.__freq_resolution * 2
         output_length = self.__freq_resolution
         self.__after_fft = blocks.vector_to_streams(itemsize=output_length * gr.sizeof_float, nstreams=2)
     
     sample_rate = self.__signal_type.get_sample_rate()
     overlap_factor = int(math.ceil(_maximum_fft_rate * input_length / sample_rate))
     # sanity limit -- OverlapGimmick is not free
     overlap_factor = min(16, overlap_factor)
     
     self.__gate = blocks.copy(gr.sizeof_gr_complex)
     self.__gate.set_enabled(not self.__paused)
     
     self.__fft_sink = MessageDistributorSink(
         itemsize=output_length * gr.sizeof_char,
         context=self.__context,
         migrate=self.__fft_sink,
         notify=self.__update_interested)
     self.__overlapper = _OverlapGimmick(
         size=input_length,
         factor=overlap_factor,
         itemsize=self.__itemsize)
     
     # Adjusts units so displayed level is independent of resolution and sample rate. Also throw in the packing offset
     compensation = to_dB(input_length / sample_rate) + self.__power_offset
     # TODO: Consider not using the logpwrfft block
     
     self.__logpwrfft = logpwrfft.logpwrfft_c(
         sample_rate=sample_rate * overlap_factor,
         fft_size=input_length,
         ref_scale=10.0 ** (-compensation / 20.0) * 2,  # not actually using this as a reference scale value but avoiding needing to use a separate add operation to apply the unit change -- this expression is the inverse of what logpwrfft does internally
         frame_rate=self.__frame_rate,
         avg_alpha=1.0,
         average=False)
     # It would make slightly more sense to use unsigned chars, but blocks.float_to_uchar does not support vlen.
     self.__fft_converter = blocks.float_to_char(vlen=self.__freq_resolution, scale=1.0)
 
     self.__scope_sink = MessageDistributorSink(
         itemsize=self.__time_length * gr.sizeof_gr_complex,
         context=self.__context,
         migrate=self.__scope_sink,
         notify=self.__update_interested)
     self.__scope_chunker = blocks.stream_to_vector_decimator(
         item_size=gr.sizeof_gr_complex,
         sample_rate=sample_rate,
         vec_rate=self.__frame_rate,  # TODO doesn't need to be coupled
         vec_len=self.__time_length)
예제 #4
0
 def get_gain(self):
     return to_dB(self.__mult.k().real)
예제 #5
0
 def get_gain(self):
     return to_dB(self.__mult.k().real)
예제 #6
0
    def __do_connect(self):
        itemsize = self.__itemsize

        if self.__signal_type.is_analytic():
            input_length = self.__freq_resolution
            output_length = self.__freq_resolution
            self.__after_fft = None
        else:
            # use vector_to_streams to cut the output in half and discard the redundant part
            input_length = self.__freq_resolution * 2
            output_length = self.__freq_resolution
            self.__after_fft = blocks.vector_to_streams(
                itemsize=output_length * gr.sizeof_float, nstreams=2)

        sample_rate = self.__signal_type.get_sample_rate()
        overlap_factor = int(
            math.ceil(_maximum_fft_rate * input_length / sample_rate))
        # sanity limit -- OverlapGimmick is not free
        overlap_factor = min(16, overlap_factor)

        self.__frame_rate_to_decimation_conversion = sample_rate * overlap_factor / input_length

        self.__gate = blocks.copy(itemsize)
        self.__gate.set_enabled(not self.__paused)

        overlapper = _OverlappedStreamToVector(size=input_length,
                                               factor=overlap_factor,
                                               itemsize=itemsize)

        self.__frame_dec = blocks.keep_one_in_n(
            itemsize=itemsize * input_length,
            n=max(
                1,
                int(
                    round(self.__frame_rate_to_decimation_conversion /
                          self.__frame_rate))))

        # the actual FFT logic, which is similar to GR's logpwrfft_c
        window = windows.build(self.__window_type, input_length, 6.76)
        window_power = sum(x * x for x in window)
        # TODO: use fft_vfc when applicable
        fft_block = (fft_vcc if itemsize == gr.sizeof_gr_complex else fft_vfc)(
            fft_size=input_length, forward=True, window=window)
        mag_squared = blocks.complex_to_mag_squared(input_length)
        logarithmizer = blocks.nlog10_ff(
            n=10,  # the "deci" in "decibel"
            vlen=input_length,
            k=(
                -to_dB(window_power) +  # compensate for window
                -to_dB(sample_rate)
                +  # convert from power-per-sample to power-per-Hz
                self.__power_offset  # offset for packing into bytes
            ))

        # It would make slightly more sense to use unsigned chars, but blocks.float_to_uchar does not support vlen.
        self.__fft_converter = blocks.float_to_char(
            vlen=self.__freq_resolution, scale=1.0)

        fft_sink = self.__fft_cell.create_sink_internal(
            numpy.dtype((numpy.int8, output_length)))
        scope_sink = self.__scope_cell.create_sink_internal(
            numpy.dtype(('c8', self.__time_length)))
        scope_chunker = blocks.stream_to_vector_decimator(
            item_size=gr.sizeof_gr_complex,
            sample_rate=sample_rate,
            vec_rate=self.__frame_rate,  # TODO doesn't need to be coupled
            vec_len=self.__time_length)

        # connect everything
        self.__context.lock()
        try:
            self.disconnect_all()
            self.connect(self, self.__gate, overlapper, self.__frame_dec,
                         fft_block, mag_squared, logarithmizer)
            if self.__after_fft is not None:
                self.connect(logarithmizer, self.__after_fft)
                self.connect(self.__after_fft, self.__fft_converter, fft_sink)
                self.connect(
                    (self.__after_fft, 1),
                    blocks.null_sink(gr.sizeof_float * self.__freq_resolution))
            else:
                self.connect(logarithmizer, self.__fft_converter, fft_sink)
            if self.__enable_scope:
                self.connect(self.__gate, scope_chunker, scope_sink)
        finally:
            self.__context.unlock()
예제 #7
0
 def get_rf_power(self):
     return to_dB(max(1e-10, self.rf_probe_block.level()))
예제 #8
0
 def get_agc_gain(self):
     return to_dB(self.agc_block.gain())
예제 #9
0
 def get_audio_power(self):
     if self.get_is_valid():
         return to_dB(max(_audio_power_minimum_amplitude, self.probe_audio.level()))
     else:
         # will not be receiving samples, so probe's value will be meaningless
         return _audio_power_minimum_dB
예제 #10
0
 def get_rf_power(self):
     return to_dB(max(1e-10, self.__probe.level()))
예제 #11
0
 def get_rf_power(self):
     return to_dB(max(1e-10, self.rf_probe_block.level()))
예제 #12
0
 def get_agc_gain(self):
     return to_dB(self.agc_block.gain())
예제 #13
0
    def __do_connect(self):
        itemsize = self.__itemsize
        
        if self.__signal_type.is_analytic():
            input_length = self.__freq_resolution
            output_length = self.__freq_resolution
            self.__after_fft = None
        else:
            # use vector_to_streams to cut the output in half and discard the redundant part
            input_length = self.__freq_resolution * 2
            output_length = self.__freq_resolution
            self.__after_fft = blocks.vector_to_streams(itemsize=output_length * gr.sizeof_float, nstreams=2)
        
        sample_rate = self.__signal_type.get_sample_rate()
        overlap_factor = int(math.ceil(_maximum_fft_rate * input_length / sample_rate))
        # sanity limit -- OverlapGimmick is not free
        overlap_factor = min(16, overlap_factor)
        
        self.__frame_rate_to_decimation_conversion = sample_rate * overlap_factor / input_length
        
        self.__gate = blocks.copy(itemsize)
        self.__gate.set_enabled(not self.__paused)
        
        overlapper = _OverlappedStreamToVector(
            size=input_length,
            factor=overlap_factor,
            itemsize=itemsize)
        
        self.__frame_dec = blocks.keep_one_in_n(
            itemsize=itemsize * input_length,
            n=int(round(self.__frame_rate_to_decimation_conversion / self.__frame_rate)))
        
        # the actual FFT logic, which is similar to GR's logpwrfft_c
        window = windows.blackmanharris(input_length)
        window_power = sum(x * x for x in window)
        # TODO: use fft_vfc when applicable
        fft_block = (fft_vcc if itemsize == gr.sizeof_gr_complex else fft_vfc)(
            fft_size=input_length,
            forward=True,
            window=window)
        mag_squared = blocks.complex_to_mag_squared(input_length)
        logarithmizer = blocks.nlog10_ff(
            n=10,  # the "deci" in "decibel"
            vlen=input_length,
            k=(
                -to_dB(window_power) +  # compensate for window
                -to_dB(sample_rate) +  # convert from power-per-sample to power-per-Hz
                self.__power_offset  # offset for packing into bytes
            ))
        
        # It would make slightly more sense to use unsigned chars, but blocks.float_to_uchar does not support vlen.
        self.__fft_converter = blocks.float_to_char(vlen=self.__freq_resolution, scale=1.0)
        
        self.__fft_sink = MessageDistributorSink(
            itemsize=output_length * gr.sizeof_char,
            context=self.__context,
            migrate=self.__fft_sink,
            notify=self.__update_interested)
    
        self.__scope_sink = MessageDistributorSink(
            itemsize=self.__time_length * gr.sizeof_gr_complex,
            context=self.__context,
            migrate=self.__scope_sink,
            notify=self.__update_interested)
        scope_chunker = blocks.stream_to_vector_decimator(
            item_size=gr.sizeof_gr_complex,
            sample_rate=sample_rate,
            vec_rate=self.__frame_rate,  # TODO doesn't need to be coupled
            vec_len=self.__time_length)

        # connect everything
        self.__context.lock()
        try:
            self.disconnect_all()
            self.connect(
                self,
                self.__gate,
                overlapper,
                self.__frame_dec,
                fft_block,
                mag_squared,
                logarithmizer)
            if self.__after_fft is not None:
                self.connect(logarithmizer, self.__after_fft)
                self.connect(self.__after_fft, self.__fft_converter, self.__fft_sink)
                self.connect((self.__after_fft, 1), blocks.null_sink(gr.sizeof_float * self.__freq_resolution))
            else:
                self.connect(logarithmizer, self.__fft_converter, self.__fft_sink)
            if self.__enable_scope:
                self.connect(
                    self.__gate,
                    scope_chunker,
                    self.__scope_sink)
        finally:
            self.__context.unlock()
예제 #14
0
 def get_rf_power(self):
     return to_dB(max(1e-10, self.__probe.level()))