def classifier_libsvmoneclass_modular (fm_train_real=traindat,fm_test_real=testdat,width=2.1,C=1,epsilon=1e-5): from shogun.Features import RealFeatures, Labels from shogun.Kernel import GaussianKernel from shogun.Classifier import LibSVMOneClass feats_train=RealFeatures(fm_train_real) feats_test=RealFeatures(fm_test_real) kernel=GaussianKernel(feats_train, feats_train, width) svm=LibSVMOneClass(C, kernel) svm.set_epsilon(epsilon) svm.train() kernel.init(feats_train, feats_test) svm.apply().get_labels() predictions = svm.apply() return predictions, svm, predictions.get_labels()
def svm_learn(kernel, options): svm = LibSVMOneClass() if options.quiet == False: svm.io.set_loglevel(MSG_INFO) svm.io.set_target_to_stderr() # use default value of epsilon: 1e-5 # svm.set_epsilon(options.epsilon) svm.parallel.set_num_threads(1) svm.set_nu(options.svmNu) svm.set_kernel(kernel) svm.train() if options.quiet == False: svm.io.set_loglevel(MSG_ERROR) return svm
def libsvm_oneclass (): print 'LibSVMOneClass' from shogun.Features import RealFeatures, Labels from shogun.Kernel import GaussianKernel from shogun.Classifier import LibSVMOneClass feats_train=RealFeatures(fm_train_real) feats_test=RealFeatures(fm_test_real) width=2.1 kernel=GaussianKernel(feats_train, feats_train, width) C=1 epsilon=1e-5 svm=LibSVMOneClass(C, kernel) svm.set_epsilon(epsilon) svm.train() kernel.init(feats_train, feats_test) svm.classify().get_labels()