def svmsgd (): print 'SVMSGD' from shogun.Features import RealFeatures, SparseRealFeatures, Labels from shogun.Classifier import SVMSGD realfeat=RealFeatures(fm_train_real) feats_train=SparseRealFeatures() feats_train.obtain_from_simple(realfeat) realfeat=RealFeatures(fm_test_real) feats_test=SparseRealFeatures() feats_test.obtain_from_simple(realfeat) C=0.9 num_threads=1 num_iter=5 labels=Labels(label_train_twoclass) svm=SVMSGD(C, feats_train, labels) svm.set_epochs(num_iter) #svm.io.set_loglevel(0) svm.train() svm.set_features(feats_test) labelPrediction = svm.classify().get_labels() print labelPrediction>0
def svmsgd (): print 'SVMSGD' from shogun.Features import RealFeatures, SparseRealFeatures, Labels from shogun.Classifier import SVMSGD realfeat=RealFeatures(fm_train_real) feats_train=SparseRealFeatures() feats_train.obtain_from_simple(realfeat) realfeat=RealFeatures(fm_test_real) feats_test=SparseRealFeatures() feats_test.obtain_from_simple(realfeat) C=0.9 epsilon=1e-5 num_threads=1 labels=Labels(label_train_twoclass) svm=SVMSGD(C, feats_train, labels) #svm.io.set_loglevel(0) svm.train() svm.set_features(feats_test) svm.classify().get_labels()
def classifier_svmsgd_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_twoclass=label_traindat,C=0.9,num_threads=1,num_iter=5): from shogun.Features import RealFeatures, SparseRealFeatures, Labels from shogun.Classifier import SVMSGD realfeat=RealFeatures(fm_train_real) feats_train=SparseRealFeatures() feats_train.obtain_from_simple(realfeat) realfeat=RealFeatures(fm_test_real) feats_test=SparseRealFeatures() feats_test.obtain_from_simple(realfeat) labels=Labels(label_train_twoclass) svm=SVMSGD(C, feats_train, labels) svm.set_epochs(num_iter) #svm.io.set_loglevel(0) svm.train() svm.set_features(feats_test) svm.apply().get_labels() predictions = svm.apply() return predictions, svm, predictions.get_labels()