mmd.set_null_approximation_method(BOOTSTRAP) mmd.set_statistic_type(BIASED) mmd.set_bootstrap_iterations(num_null_samples) null_samples_boot=mmd.bootstrap_null() # sample from null distribution # spectrum, biased statistic if "sample_null_spectrum" in dir(QuadraticTimeMMD): mmd.set_null_approximation_method(MMD2_SPECTRUM) mmd.set_statistic_type(BIASED) null_samples_spectrum=mmd.sample_null_spectrum(num_null_samples, m-10) # fit gamma distribution, biased statistic mmd.set_null_approximation_method(MMD2_GAMMA) mmd.set_statistic_type(BIASED) gamma_params=mmd.fit_null_gamma() # sample gamma with parameters null_samples_gamma=array([gamma(gamma_params[0], gamma_params[1]) for _ in range(num_null_samples)]) # plot figure() title('Quadratic Time MMD') # plot data of p and q subplot(2,3,1) grid(True) gca().xaxis.set_major_locator( MaxNLocator(nbins = 4) ) # reduce number of x-ticks gca().yaxis.set_major_locator( MaxNLocator(nbins = 4) ) # reduce number of x-ticks plot(data[0][0:m], data[1][0:m], 'ro', label='$x$') plot(data[0][m+1:2*m], data[1][m+1:2*m], 'bo', label='$x$', alpha=0.5)
def quadratic_time_mmd_graphical(): # parameters, change to get different results m=100 dim=2 # setting the difference of the first dimension smaller makes a harder test difference=0.5 # number of samples taken from null and alternative distribution num_null_samples=500 # streaming data generator for mean shift distributions gen_p=MeanShiftDataGenerator(0, dim) gen_q=MeanShiftDataGenerator(difference, dim) # Stream examples and merge them in order to compute MMD on joint sample # alternative is to call a different constructor of QuadraticTimeMMD features=gen_p.get_streamed_features(m) features=features.create_merged_copy(gen_q.get_streamed_features(m)) # use the median kernel selection # create combined kernel with Gaussian kernels inside (shoguns Gaussian kernel is # compute median data distance in order to use for Gaussian kernel width # 0.5*median_distance normally (factor two in Gaussian kernel) # However, shoguns kernel width is different to usual parametrization # Therefore 0.5*2*median_distance^2 # Use a subset of data for that, only 200 elements. Median is stable sigmas=[2**x for x in range(-3,10)] widths=[x*x*2 for x in sigmas] print "kernel widths:", widths combined=CombinedKernel() for i in range(len(sigmas)): combined.append_kernel(GaussianKernel(10, widths[i])) # create MMD instance, use biased statistic mmd=QuadraticTimeMMD(combined,features, m) mmd.set_statistic_type(BIASED) # kernel selection instance (this can easily replaced by the other methods for selecting # single kernels selection=MMDKernelSelectionMax(mmd) # perform kernel selection kernel=selection.select_kernel() kernel=GaussianKernel.obtain_from_generic(kernel) mmd.set_kernel(kernel); print "selected kernel width:", kernel.get_width() # sample alternative distribution (new data each trial) alt_samples=zeros(num_null_samples) for i in range(len(alt_samples)): # Stream examples and merge them in order to replace in MMD features=gen_p.get_streamed_features(m) features=features.create_merged_copy(gen_q.get_streamed_features(m)) mmd.set_p_and_q(features) alt_samples[i]=mmd.compute_statistic() # sample from null distribution # bootstrapping, biased statistic mmd.set_null_approximation_method(BOOTSTRAP) mmd.set_statistic_type(BIASED) mmd.set_bootstrap_iterations(num_null_samples) null_samples_boot=mmd.bootstrap_null() # sample from null distribution # spectrum, biased statistic if "sample_null_spectrum" in dir(QuadraticTimeMMD): mmd.set_null_approximation_method(MMD2_SPECTRUM) mmd.set_statistic_type(BIASED) null_samples_spectrum=mmd.sample_null_spectrum(num_null_samples, m-10) # fit gamma distribution, biased statistic mmd.set_null_approximation_method(MMD2_GAMMA) mmd.set_statistic_type(BIASED) gamma_params=mmd.fit_null_gamma() # sample gamma with parameters null_samples_gamma=array([gamma(gamma_params[0], gamma_params[1]) for _ in range(num_null_samples)]) # to plot data, sample a few examples from stream first features=gen_p.get_streamed_features(m) features=features.create_merged_copy(gen_q.get_streamed_features(m)) data=features.get_feature_matrix() # plot figure() title('Quadratic Time MMD') # plot data of p and q subplot(2,3,1) grid(True) gca().xaxis.set_major_locator( MaxNLocator(nbins = 4) ) # reduce number of x-ticks gca().yaxis.set_major_locator( MaxNLocator(nbins = 4) ) # reduce number of x-ticks plot(data[0][0:m], data[1][0:m], 'ro', label='$x$') plot(data[0][m+1:2*m], data[1][m+1:2*m], 'bo', label='$x$', alpha=0.5) title('Data, shift in $x_1$='+str(difference)+'\nm='+str(m)) xlabel('$x_1, y_1$') ylabel('$x_2, y_2$') # histogram of first data dimension and pdf subplot(2,3,2) grid(True) gca().xaxis.set_major_locator( MaxNLocator(nbins = 3) ) # reduce number of x-ticks gca().yaxis.set_major_locator( MaxNLocator(nbins = 3 )) # reduce number of x-ticks hist(data[0], bins=50, alpha=0.5, facecolor='r', normed=True) hist(data[1], bins=50, alpha=0.5, facecolor='b', normed=True) xs=linspace(min(data[0])-1,max(data[0])+1, 50) plot(xs,normpdf( xs, 0, 1), 'r', linewidth=3) plot(xs,normpdf( xs, difference, 1), 'b', linewidth=3) xlabel('$x_1, y_1$') ylabel('$p(x_1), p(y_1)$') title('Data PDF in $x_1, y_1$') # compute threshold for test level alpha=0.05 null_samples_boot.sort() null_samples_spectrum.sort() null_samples_gamma.sort() thresh_boot=null_samples_boot[floor(len(null_samples_boot)*(1-alpha))]; thresh_spectrum=null_samples_spectrum[floor(len(null_samples_spectrum)*(1-alpha))]; thresh_gamma=null_samples_gamma[floor(len(null_samples_gamma)*(1-alpha))]; type_one_error_boot=sum(null_samples_boot<thresh_boot)/float(num_null_samples) type_one_error_spectrum=sum(null_samples_spectrum<thresh_boot)/float(num_null_samples) type_one_error_gamma=sum(null_samples_gamma<thresh_boot)/float(num_null_samples) # plot alternative distribution with threshold subplot(2,3,4) grid(True) gca().xaxis.set_major_locator( MaxNLocator(nbins = 3) ) # reduce number of x-ticks gca().yaxis.set_major_locator( MaxNLocator(nbins = 3) ) # reduce number of x-ticks hist(alt_samples, 20, normed=True); axvline(thresh_boot, 0, 1, linewidth=2, color='red') type_two_error=sum(alt_samples<thresh_boot)/float(num_null_samples) title('Alternative Dist.\n' + 'Type II error is ' + str(type_two_error)) # compute range for all null distribution histograms hist_range=[min([min(null_samples_boot), min(null_samples_spectrum), min(null_samples_gamma)]), max([max(null_samples_boot), max(null_samples_spectrum), max(null_samples_gamma)])] # plot null distribution with threshold subplot(2,3,3) gca().xaxis.set_major_locator( MaxNLocator(nbins = 3) ) # reduce number of x-ticks gca().yaxis.set_major_locator( MaxNLocator(nbins = 3 )) # reduce number of x-ticks hist(null_samples_boot, 20, range=hist_range, normed=True); axvline(thresh_boot, 0, 1, linewidth=2, color='red') title('Bootstrapped Null Dist.\n' + 'Type I error is ' + str(type_one_error_boot)) grid(True) # plot null distribution spectrum subplot(2,3,5) grid(True) gca().xaxis.set_major_locator( MaxNLocator(nbins = 3) ) # reduce number of x-ticks gca().yaxis.set_major_locator( MaxNLocator(nbins = 3) ) # reduce number of x-ticks hist(null_samples_spectrum, 20, range=hist_range, normed=True); axvline(thresh_spectrum, 0, 1, linewidth=2, color='red') title('Null Dist. Spectrum\nType I error is ' + str(type_one_error_spectrum)) # plot null distribution gamma subplot(2,3,6) grid(True) gca().xaxis.set_major_locator( MaxNLocator(nbins = 3) ) # reduce number of x-ticks gca().yaxis.set_major_locator( MaxNLocator(nbins = 3) ) # reduce number of x-ticks hist(null_samples_gamma, 20, range=hist_range, normed=True); axvline(thresh_gamma, 0, 1, linewidth=2, color='red') title('Null Dist. Gamma\nType I error is ' + str(type_one_error_gamma)) # pull plots a bit apart subplots_adjust(hspace=0.5) subplots_adjust(wspace=0.5)
mmd.set_null_approximation_method(BOOTSTRAP) mmd.set_statistic_type(BIASED) mmd.set_bootstrap_iterations(num_null_samples) null_samples_boot = mmd.bootstrap_null() # sample from null distribution # spectrum, biased statistic if "sample_null_spectrum" in dir(QuadraticTimeMMD): mmd.set_null_approximation_method(MMD2_SPECTRUM) mmd.set_statistic_type(BIASED) null_samples_spectrum = mmd.sample_null_spectrum(num_null_samples, m - 10) # fit gamma distribution, biased statistic mmd.set_null_approximation_method(MMD2_GAMMA) mmd.set_statistic_type(BIASED) gamma_params = mmd.fit_null_gamma() # sample gamma with parameters null_samples_gamma = array( [gamma(gamma_params[0], gamma_params[1]) for _ in range(num_null_samples)]) # to plot data, sample a few examples from stream first features = gen_p.get_streamed_features(m) features = features.create_merged_copy(gen_q.get_streamed_features(m)) data = features.get_feature_matrix() # plot figure() title('Quadratic Time MMD') # plot data of p and q subplot(2, 3, 1)