def perform_feature_model(self, feature): if feature == 'sift': sift = SIFT(self.DATABASE_IMAGES_PATH) sift.read_and_clusterize(num_cluster=150) feature_vectors = sift.calculate_centroids_histogram() else: histogram_of_gradients = HistogramOfGradients(self.DATABASE_IMAGES_PATH) feature_vectors = histogram_of_gradients.get_image_vectors() self.database_connection.create_feature_model_table(feature) self.database_connection.insert_feature_data(feature, feature_vectors)
def perform_classification_feature_model(self, feature, path, cluster_count): self.database_connection.create_feature_model_table(feature) if "histogram_of_gradients" in feature: histogram_of_gradients = HistogramOfGradients(path) feature_vectors = histogram_of_gradients.get_image_vectors() elif "local_binary_pattern" in feature: local_binary_pattern = LocalBinaryPattern(path) feature_vectors = local_binary_pattern.get_image_vectors() elif "sift" in feature: sift = SIFT(path) sift.read_and_clusterize(num_cluster=int(cluster_count)) feature_vectors = sift.calculate_centroids_histogram() self.database_connection.insert_feature_data(feature, feature_vectors)