def __init__(self, input_dim, whitening_output_dim, output_dim, eps=0.001, **kwargs): self.input_dim = input_dim self.whitening_output_dim = whitening_output_dim self.output_dim = output_dim self.eps = eps self.kwargs = kwargs self.whiteningnode = WhiteningNode(input_dim, whitening_output_dim, **kwargs) self.mcanode = MCANode(whitening_output_dim, output_dim, self.eps, **kwargs) self.singlepcanode = CCIPCANode(whitening_output_dim, output_dim=1) self.deMeanInput = self.kwargs.get('deMean', True) self.whiteningnode.deMeanInput = False self.mcanode.deMeanInput = False self.singlepcanode.deMeanInput = False self.xavg = signalAvgNode(mode=self.kwargs.get('avgMode', 'Avg'), avgN=self.kwargs.get('avgN',1000)) self.xderiv = signalDerivNode() self.zbvar = signalVarNode() self.T = self.kwargs.get('T', 1) self._curreps = [self.eps for _ in xrange(output_dim)] self._initExp = True self.n = 1 self.v = np.zeros([output_dim, input_dim]) self.wv = np.zeros([whitening_output_dim, input_dim]) self.err = 0.0 self.derr = 0.0 self._newerr = 0.0 self._errcnt = 0 self._validTrainingModes = ['Incremental']
def __init__(self, input_dim, output_dim, **kwargs): self.input_dim = input_dim self.output_dim = output_dim self.kwargs = kwargs self.var_rel = self.kwargs.get('var_rel', 0.001) self.beta = self.kwargs.get('beta', 1.1) self.xavg = signalAvgNode(mode=self.kwargs.get('avgMode', 'Avg'), avgN=self.kwargs.get('avgN', 1000)) self.deMeanInput = self.kwargs.get('deMean', True) self.reduce = self.kwargs.get('reduce', False) self.n = 1 # n value for the ccipca self._v = 0.1 * np.random.randn( self.output_dim, self.input_dim) # Internal Eigen Vector (unNormalized) self._d = np.sum(np.absolute(self._v)**2, axis=-1)**(1. / 2) # Internal Eigen Values self._vn = self._v / self._d.reshape( self._v.shape[0], 1) # Internal Eigen Vector (Normalized) self.explained_var_tot = self._d.sum() # Total Explained Variance self.v = self._vn.copy( ) # Eigen Vector (Normalized) (reduced if reduce is True) self.d = self._d.copy() # Eigen Value (reduced if reduce is True) self.reducedDim = self.output_dim self._validTrainingModes = ['Incremental']
def __init__(self, input_dim, whitening_output_dim, output_dim, eps=0.001, **kwargs): self.input_dim = input_dim self.whitening_output_dim = whitening_output_dim self.output_dim = output_dim self.eps = eps self.kwargs = kwargs self.whiteningnode = WhiteningNode(input_dim, whitening_output_dim, **kwargs) self.mcanode = MCANode(whitening_output_dim, output_dim, self.eps, **kwargs) self.singlepcanode = CCIPCANode(whitening_output_dim, output_dim=1) self.deMeanInput = self.kwargs.get('deMean', True) self.whiteningnode.deMeanInput = False self.mcanode.deMeanInput = False self.singlepcanode.deMeanInput = False self.xavg = signalAvgNode(mode=self.kwargs.get('avgMode', 'Avg'), avgN=self.kwargs.get('avgN',1000)) self.xderiv = signalDerivNode() self.zbvar = signalVarNode() self.T = self.kwargs.get('T', 1) self._curreps = [self.eps for _ in range(output_dim)] self._initExp = True self.n = 1 self.v = np.zeros([output_dim, input_dim]) self.wv = np.zeros([whitening_output_dim, input_dim]) self.err = 0.0 self.derr = 0.0 self._newerr = 0.0 self._errcnt = 0 self._validTrainingModes = ['Incremental']
def __init__(self, input_dim, output_dim, eps=0.001, gamma=1.0, **kwargs): self.input_dim = input_dim self.output_dim = output_dim self.eps = eps self.gamma = gamma self.kwargs = kwargs self.deMeanInput = self.kwargs.get('deMean', True) self.xavg = signalAvgNode(mode=self.kwargs.get('avgMode', 'Avg'), avgN=self.kwargs.get('avgN', 1000)) self.normalize = self.kwargs.get('normalize', True) self.n = 1 # n value for the mca self._v = 0.1 * np.random.randn( self.output_dim, self.input_dim) # Internal Eigen Vector (unNormalized) _d = np.sum(np.absolute(self._v)**2, axis=-1)**(1. / 2) # Internal Eigen Values self._v = self._v / _d.reshape(self._v.shape[0], 1) # Internal Eigen Vector (Normalized) self.v = self._v.copy( ) # Eigen Vector (Normalized) (reduced if reduce is True) self.d = _d.copy() # Eigen Value (reduced if reduce is True) self._validTrainingModes = ['Incremental']
def __init__(self, input_dim, output_dim, eps=0.001, gamma=1.0, **kwargs): self.input_dim = input_dim self.output_dim = output_dim self.eps = eps self.gamma = gamma self.kwargs = kwargs self.deMeanInput = self.kwargs.get('deMean', True) self.xavg = signalAvgNode(mode=self.kwargs.get('avgMode', 'Avg'), avgN=self.kwargs.get('avgN',1000)) self.normalize = self.kwargs.get('normalize', True) self.n = 1 # n value for the mca self._v = 0.1*np.random.randn(self.output_dim, self.input_dim) # Internal Eigen Vector (unNormalized) _d = np.sum(np.absolute(self._v)**2,axis=-1)**(1./2) # Internal Eigen Values self._v = self._v/_d.reshape(self._v.shape[0],1) # Internal Eigen Vector (Normalized) self.v = self._v.copy() # Eigen Vector (Normalized) (reduced if reduce is True) self.d = _d.copy() # Eigen Value (reduced if reduce is True) self._validTrainingModes = ['Incremental']
def __init__(self, input_dim, output_dim, **kwargs): self.input_dim = input_dim self.output_dim = output_dim self.kwargs = kwargs self.var_rel = self.kwargs.get('var_rel',0.001) self.beta = self.kwargs.get('beta',1.1) self.xavg = signalAvgNode(mode=self.kwargs.get('avgMode', 'Avg'), avgN=self.kwargs.get('avgN',1000)) self.deMeanInput = self.kwargs.get('deMean', True) self.reduce = self.kwargs.get('reduce', False) self.n = 1 # n value for the ccipca self._v = 0.1*np.random.randn(self.output_dim, self.input_dim) # Internal Eigen Vector (unNormalized) self._d = np.sum(np.absolute(self._v)**2,axis=-1)**(1./2) # Internal Eigen Values self._vn = self._v/self._d.reshape(self._v.shape[0],1) # Internal Eigen Vector (Normalized) self.explained_var_tot = self._d.sum() # Total Explained Variance self.v = self._vn.copy() # Eigen Vector (Normalized) (reduced if reduce is True) self.d = self._d.copy() # Eigen Value (reduced if reduce is True) self.reducedDim = self.output_dim self._validTrainingModes = ['Incremental']