def run(netdef,tosave,modify,procs,thisProc,stims,param,repeats,sim_time,SaveSpikes,SaveVoltage,SaveConductance,SaveCurrent): net = netdef() if SaveVoltage: net.recordVoltage() repeats = int(repeats) # Randomseed was 200 for most figures # Changed to 200 for rat # Changed to 200 for anurans s = Simulation(net, randomseed=202,delay=25) s.verbose = False s.sim_time = sim_time s.dt = 0.050 total = len(stims)*len(param)*repeats spp = ceil(float(total)/procs) start = thisProc*spp end = (thisProc+1)*spp count = 0 for a in param: s.set_amplitude(net.sim_amp) for d in stims*repeats: if count >= start and count < end: net = modify(net,a,d) progress.update(count-start,spp,thisProc) s.stim_dur = d s.run() key = [a,d] net.savecells(tosave, key, spikes=SaveSpikes,voltage=SaveVoltage,conductance=SaveConductance,current=SaveCurrent) count += 1 progress.update(spp,spp,thisProc) r = [thisProc,net.savedparams,net.savedcells] return r
import network import neuron import netshow as ns import progress # Create our network networks = {} networks["C"] = network.DTN_Coincidence() networks["AC"] = network.DTN_AntiCoincidence() # Initialize the simulation with the network s = {} for net in networks: s[net] = Simulation(networks[net]) s[net].verbose = False s[net].sim_time = 100 s[net].dt = 0.025 # Run the simulations stims = [i for i in range(1,31,1)] repeats = 15 param = [(i*2)+10 for i in range(11)] total = len(stims)*len(param)*repeats print "Running %d simulations..." % total count = 0 for a in param: for net in networks: