def main(hdf, name): f = open('{0}.csv'.format(name), 'w') csvw = csv.writer(f) # A header for the table head = ["tau", "p_tau", "r", "p_r", "rho", "p_rho", "cond", "boldmeta", "model"] csvw.writerow(head) models = get_model_names(hdf) for model in models: # Get model meta data meta = get_model_meta(hdf, model) boldmeta = "_".join([str(b) for b in meta["bold"]]) ## meta['bold'] can be a list ## but we need a string.... # Get all the design matrices and # Get all the bold signals as a 1d array dm = np.array(read_hdf(hdf, '/' + model + '/dm')) bold = np.array(read_hdf(hdf, '/' + model + '/bold')).flatten() # Loop over the dm cols in the dm: # axis 1 is a sim index/count, # axis 2 is the dm row # axis 3 is the dm cols for jj in range(dm.shape[2]): # Get all this cols in a 1d array # matching what was done to # bold above x1 = dm[:, :, jj].flatten() x1name = meta["dm"][jj] # And calc the corr between # the two 1d arrays tau, p_tau = kendalltau(bold, x1) r, p_r = pearsonr(bold, x1) rho, p_rho = spearmanr(bold, x1) # then write it all out. csvw.writerow([ tau, p_tau, r, p_r, rho, p_rho, x1name, boldmeta, model]) f.close()
def main(hdf, name): # Create a csv file to tabulate into f = open('{0}.csv'.format(name), 'w') csvw = csv.writer(f) # Make a header for the table header = ["x", "count", "cond"] csvw.writerow(header) conds = set(["acc", "value", "rpe", "p", "rand", "box"]) # Find a dmcol from models, # pick the first model with # that dm cond. Conds across # models are the same. locations = {} models = get_model_names(hdf) for model in models: # Get model meta data and compare it too conds meta = get_model_meta(hdf, model) for ii, dmname in enumerate(meta["dm"]): if dmname in conds: locations[dmname] = (model, ii) conds.remove(dmname) ## conds loses elements! # If conds is empty, stop if not conds: print("All conds found. {0}".format(model)) break # Get each dm's data and pick a col using pos; # pos matches cond. dmdata = {} for cond, loci in locations.items(): print("Getting {0}".format(cond)) model, pos = loci dm = np.array(read_hdf(hdf, '/' + model + '/dm')) dmdata[cond] = dm[:,:,pos].flatten() # Create a histogram then write it out. for cond, data in dmdata.items(): print("Histogramming {0}".format(cond)) # Instantiate a RHist instance and # use it to make a histogram hist = RHist(name=cond, decimals=2) [hist.add(x) for x in data] # Tell that textfile a tale. [csvw.writerow([k, v, cond]) for k, v in hist.h.items()] f.close()
def create_hist_list(hdf, model, stat): """ Create a list of Rhist (histogram) objects for <model> and <stat> in the given <hdf>. If <stat> has only one entry (as is the case for 'aic') the list will have only one entry. If however <stat> has n entries per model (like't') the list will have n-1 entries. As n matches the number of columns in the design matrix, the rightmost will always correspond to the dummy predictor and is therefore discarded. """ hist_list = [] ## A list of RHist objects. meta = get_model_meta(hdf, model) ## metadata for naming # A handle on the hdf data hdfdata = read_hdf(hdf, '/' + model + '/' + stat) # Loop over the nodes, adding the data # for each to a RHist. for node in hdfdata: # Some data will be list-like # so try to iterate, if that fails # assume the data is a single number try: for ii in range(len(node) - 1): # Init entries in hist_list as needed try: hist_list[ii].add(node[ii]) except IndexError: hist_list.append(RHist(name=meta['dm'][ii], decimals=2)) hist_list[ii].add(node[ii]) except TypeError: # Assume a number so hist_list has only one # entry (i.e. 0). # # Init entries in hist_list as needed try: hist_list[0].add(node) except IndexError: hist_list.append(RHist(name=stat, decimals=2)) hist_list[0].add(node) return hist_list
def create_hist_list(hdf, model, stat): """ Create a list of Rhist (histogram) objects for <model> and <stat> in the given <hdf>. If <stat> has only one entry (as is the case for 'aic') the list will have only one entry. If however <stat> has n entries per model (like't') the list will have n-1 entries. As n matches the number of columns in the design matrix, the rightmost will always correspond to the dummy predictor and is therefore discarded. """ hist_list = [] ## A list of RHist objects. meta = get_model_meta(hdf, model) ## metadata for naming # A handle on the hdf data hdfdata = read_hdf(hdf, '/' + model + '/' + stat) # Loop over the nodes, adding the data # for each to a RHist. for node in hdfdata: # Some data will be list-like # so try to iterate, if that fails # assume the data is a single number try: for ii in range(len(node)-1): # Init entries in hist_list as needed try: hist_list[ii].add(node[ii]) except IndexError: hist_list.append(RHist(name=meta['dm'][ii], decimals=2)) hist_list[ii].add(node[ii]) except TypeError: # Assume a number so hist_list has only one # entry (i.e. 0). # # Init entries in hist_list as needed try: hist_list[0].add(node) except IndexError: hist_list.append(RHist(name=stat, decimals=2)) hist_list[0].add(node) return hist_list
def main(hdf, name): # Create a csv file to tabulate into f = open('{0}.csv'.format(name), 'w') csvw = csv.writer(f) # A header for the table head = ["tau", "p_tau", "r", "p_r", "rho", "p_rho", "cond0", "cond1"] csvw.writerow(head) conds = set(["acc", "value", "rpe", "p", "rand", "box"]) pairs = permutations(conds, 2) # Find a dmcol from models, # pick the first model with # that dm cond. Conds across # models are the same. locations = {} models = get_model_names(hdf) for model in models: # Get model meta data and compare it too conds meta = get_model_meta(hdf, model) for ii, dmname in enumerate(meta["dm"]): if dmname in conds: locations[dmname] = (model, ii) conds.remove(dmname) ## conds loses elements! # If conds is empty, stop if not conds: print("All conds found by {0}".format(model)) break # Get the data dmdata = {} for cond, loci in locations.items(): print("Getting {0}".format(cond)) model, pos = loci dm = np.array(read_hdf(hdf, '/' + model + '/dm')) ## Get all the dm's data dmdata[cond] = dm[:,:,pos].flatten() ## pick a col using pos, as this is ## the data matching name # Calculate all pair-wise correlations for pair in pairs: print("Correlate: {0}".format(pair)) cond0, cond1 = pair x0 = dmdata[cond0] x1 = dmdata[cond1] tau, p_tau = kendalltau(x0, x1) r, p_r = pearsonr(x0, x1) rho, p_rho = spearmanr(x0, x1) # then write it all out. csvw.writerow([ tau, p_tau, r, p_r, rho, p_rho, cond0, cond1]) f.close()