def test_rep(self): print("test rep") path2 = "./orig_0.8_rep.txt" s = similarity.Similarity(self.path1, path2).similar() print('%.2f' % s) # 对比判断测试是否正确 self.assertGreaterEqual(s, 0) self.assertLessEqual(s, 1)
def district_similarity(): """Compute district similarity matrix using census, NCES, and census district data. OUTPUT: Similarity object """ census = get_census.all_states() columns = [ "STNAME", "LATCOD", "LONCOD", "TOTALREV", "TFEDREV", "TSTREV", "TLOCREV", "TOTALEXP", "TCURSSVC", "TCAPOUT", "HR1", "HE1", "HE2" ] nces = get_nces.districts(columns=columns, nonneg=True) ddf = pd.concat([census, nces.loc[census.index]], axis=1) sim = similarity.Similarity( ddf, ref_columns=["District Name", "State", "STNAME", "LATCOD", "LONCOD"]) return sim
mid.load_mention_2_id() print 'finish loading mention2id' # training phase # Step3: load questions print 'begin to load questions' query_list = query.QueryList() query_list.read_query_file(gl.testing_data_split_file_name) fh = codecs.open(gl.testing_data_result_file_name, 'w', encoding='utf-8') fh_nomatch = codecs.open(gl.testing_data_not_match_result_file_name, 'w', encoding='utf-8') sim = similarity.Similarity() for qid, qry in enumerate(query_list.query_list): if qid % 100 == 0: print 'Processed', qid, 'questions' # print '||||'.join(qry.tokens) # print 'entity:' + entity + 'len(entity):' + str(len(entity)) # print 'rest_token:', '----'.join(rest_token) # input('Press a digit to continue\n') qry_possible_id_dict = {} for entity in qry.tokens: possible_ids = mid.find_id_set(entity) for pid in possible_ids: # print 'possible id:(' + pid + ')' + str(len(pid)) if not qry.valid_pid(pid): continue try:
def __init__(self, sim_arr): self.simdf = pd.read_csv("../input/compute_similarity.csv") self.sim_arr = sim_arr self.data_from_sim = similarity.Similarity(self.simdf)
def entity_recog_thread(threadName, threadNo): for fidx in xrange(20): if fidx % 20 != threadNo: continue folder_idx = 's_' + str("%04d" % fidx) + '/' for x in ascii_lowercase: question_file_name = gl.processed_data_split_file_folder + folder_idx + 'zhidao_xa' + x + '.process-data' if not os.path.isfile(question_file_name): continue if not os.path.exists(gl.res_data_file_folder + folder_idx): os.makedirs(gl.res_data_file_folder + folder_idx) result_file_name = gl.res_data_file_folder + folder_idx + 'zhidao_xa' + x + '.res-data' result_not_match_file_name = gl.res_data_file_folder + folder_idx + 'not_match.zhidao_xa' + x + '.res-data' if os.path.isfile(result_file_name): continue query_list = query.QueryList() query_list.read_query_file(question_file_name) fh = codecs.open(result_file_name, 'w', encoding='utf-8') fh_nomatch = codecs.open(result_not_match_file_name, 'w', encoding='utf-8') sim = similarity.Similarity() for qid, qry in enumerate(query_list.query_list): if qid % 100 == 0: print threadName, 'Processed', qid, 'questions' # print '||||'.join(qry.tokens) # print 'entity:' + entity + 'len(entity):' + str(len(entity)) # print 'rest_token:', '----'.join(rest_token) # input('Press a digit to continue\n') qry_possible_id_dict = {} for entity in qry.tokens: possible_ids = mid.find_id_set(entity) for pid in possible_ids: # print 'possible id:(' + pid + ')' + str(len(pid)) if not qry.valid_pid(pid): continue try: qry_possible_id_dict[qid+1].append(pid) except KeyError: qry_possible_id_dict[qid+1] = [pid] if (qid+1) not in qry_possible_id_dict: # print 'Unfortunately,' + qry.query_origin + ' does not match any kb entity' fh_nomatch.write('<question id=' + str(qid + 1) + '>\t') fh_nomatch.write(qry.query_origin + '\n') continue # remove duplicate possible_ids because different entities might have the same possible_id possible_ids = list(set(qry_possible_id_dict[qid+1])) tokens = ''.join(qry.tokens) scores = [(len(set(pid)), pid) for pid in possible_ids] scores = sorted(scores, key=lambda s: -s[0]) # for item in scores: # print 'Score for ' + item[1] + ':', item[0] # raw_input('*****************\n') if len(scores) == 0: scores = [(0, tokens[0])] total_answer_scores = [] for rank in xrange(min(len(scores), 30)): pid = scores[rank][1] # pid = scores[0][1] try: info = kb.knowledge_about[pid] except KeyError: # print 'Unfortunately,' + pid + 'not fount in the knowledge base' # return something fh.write('<question id=' + str(qid + 1) + '>\t') fh.write(qry.query_origin + '\n') fh.write('<answer id=' + str(qid + 1) + '>\t') fh.write('[THIS-IS-AN-ANSWER.]\n') print qid+1, '[THIS-IS-AN-ANSWER.]' fh.write('==================================================\n') continue if len(info) == 0: fh.write('---------------------------------------------\n') fh.write('<subject id=' + str(qid + 1) + '-' + str(rank) + '>\t') fh.write(pid + '\n') # fh.write('---------------------------------------------\n') possile_answers = [] for idx, obj in enumerate(info): attr, entity2 = obj if 1: # if attr == 'BaiduCARD': # only extract BaiduCard relation possile_answers.append({'pid': pid, 'answer': entity2, 'relation': attr}) if idx > 30: break; answer_scores = [(sim.similarity_customize_overlap(item['answer'], qry.answer), item) for item in possile_answers] # print 'pid', pid # for item in answer_scores: # print 'Score for ' + item[1]['answer'] + ':', item[0] answer_scores = sorted(answer_scores, key=lambda s: -s[0]) total_answer_scores = total_answer_scores + answer_scores best_match, best_match_score = '[THIS-IS-AN-ANSWER.]', 0.0 if len(total_answer_scores) != 0: best_match = total_answer_scores[0][1]['answer'] best_match_score = total_answer_scores[0][0] fh.write('<question id=' + str(qid + 1) + '>\t') fh.write(qry.query_origin + '\n') if len(total_answer_scores) != 0 and best_match_score !=0: for idx, candidate in enumerate(total_answer_scores): fh.write('---------------------------------------------\n') fh.write('<subject id=' + str(qid + 1) + '-' + str(idx) + '>\t') fh.write(candidate[1]['pid'] + '\n') fh.write('<relation id=' + str(qid + 1) + '-' + str(idx) + '>\t') fh.write(candidate[1]['relation'] + '\n') fh.write('<object id=' + str(qid + 1) + '-' + str(idx) + '>\t') fh.write(candidate[1]['answer'] + '\n') # fh.write('<best match subject id=' + str(qid + 1) + '>\t') # fh.write(total_answer_scores[0][1]['pid'] + '\n') # fh.write('<best match answer id=' + str(qid + 1) + '>\t') # fh.write(best_match + '\n') # fh.write('<best match score id=' + str(qid + 1) + '>\t') # fh.write(str(best_match_score) + '\n') else: fh.write('---------------------------------------------\n') fh.write('[NO-SUBJECT.]' + '\n') # print qid+1, best_match[1] fh.write('==================================================\n') print 'closing file', result_file_name fh.close() fh_nomatch.close()