def do_eval(sess): """Runs one evaluation against the full epoch of data. Args: sess: The session in which the model has been trained. eval_correct: The Tensor that returns the number of correct predictions. """ left_batch_eval, right_batch_eval, lidar_batch_eval = simladar.inputs( eval_data=True) logits_eval = simladar.inference(left_batch_eval, right_batch_eval) loss_eval = simladar.eval_loss(logits_eval, lidar_batch_eval) # And run one epoch of eval. rmse = sess.run(loss_eval) return rmse
def evaluate(): """Eval CIFAR-10 for a number of steps.""" # with tf.Graph().as_default(),tf.device('/cpu:0') as g: with tf.device('/cpu:0') as g: global_step = tf.Variable(0, trainable=False) # # Get images and labels for CIFAR-10. # eval_data = FLAGS.eval_data == 'test' # images, labels = cifar10.inputs(eval_data=eval_data) left_batch_validate, right_batch_validate, lidar_batch_validate = simladar.inputs( eval_data=True) # Build a Graph that computes the logits predictions from the # inference model. # logits = cifar10.inference(images) keep_prob = tf.constant(1.) #dropout (keep probability) pred_validate = simladar.inference(left_batch_validate, right_batch_validate, keep_prob) # Calculate predictions. # top_k_op = tf.nn.in_top_k(logits, labels, 1) valid_op = tf.sqrt( tf.reduce_mean( tf.square(tf.sub(lidar_batch_validate, pred_validate)))) # Restore the moving average version of the learned variables for eval. variable_averages = tf.train.ExponentialMovingAverage( simladar.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir, g) while True: eval_once(saver, summary_writer, valid_op, summary_op) if FLAGS.run_once: break time.sleep(FLAGS.eval_interval_secs)
def train(): """Train CIFAR-10 for a number of steps.""" with tf.Graph().as_default(): global_step = tf.Variable(0, trainable=False) # Get images and labels . left_batch, right_batch, lidar_batch = simladar.inputs() # Build a Graph that computes the logits predictions from the # inference model. logits = simladar.inference(left_batch, right_batch) # Calculate loss. loss = simladar.loss(logits, lidar_batch) # Build a Graph that trains the model with one batch of examples and # updates the model parameters. train_op = simladar.train(loss, global_step) # Create a saver. saver = tf.train.Saver(tf.all_variables()) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Build an initialization operation to run below. init = tf.initialize_all_variables() # Start running operations on the Graph. sess = tf.Session(config=tf.ConfigProto( log_device_placement=FLAGS.log_device_placement)) sess.run(init) # Start the queue runners. tf.train.start_queue_runners(sess=sess) summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph) for step in xrange(FLAGS.max_steps): start_time = time.time() _, loss_value = sess.run([train_op, loss]) duration = time.time() - start_time assert not np.isnan(loss_value), 'Model diverged with loss = NaN' if step % 10 == 0: num_examples_per_step = FLAGS.batch_size examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) format_str = ( '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print(format_str % (datetime.now(), step, loss_value, examples_per_sec, sec_per_batch)) if step % 100 == 0: # eval_rmse = do_eval(sess) # print('eval rmse: ',eval_rmse ) summary_str = sess.run(summary_op) summary_writer.add_summary(summary_str, step) # Save the model checkpoint periodically. if step % 1000 == 0 or (step + 1) == FLAGS.max_steps: checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step)
def train(): """Train CIFAR-10 for a number of steps.""" with tf.Graph().as_default(): global_step = tf.Variable(0, trainable=False) # Get images and labels . left_batch, right_batch, lidar_batch = simladar.inputs() keep_prob = tf.constant(DROPOUT_PROB) #dropout (keep probability) # Build a Graph that computes the logits predictions from the # inference model. logits = simladar.inference(left_batch, right_batch, keep_prob) # Calculate loss. loss = simladar.loss(logits, lidar_batch) # Build a Graph that trains the model with one batch of examples and # updates the model parameters. train_op = simladar.train(loss, global_step) # Create a saver. saver = tf.train.Saver(tf.global_variables()) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Build an initialization operation to run below. init = tf.global_variables_initializer() # Start running operations on the Graph. config = tf.ConfigProto() config.gpu_options.allow_growth = True config.log_device_placement = FLAGS.log_device_placement sess = tf.Session(config=config) sess.run(init) # load model checkpoint = tf.train.get_checkpoint_state(FLAGS.save_dir) if checkpoint and checkpoint.model_checkpoint_path: saver.restore(sess, checkpoint.model_checkpoint_path) print("Successfully loaded:", checkpoint.model_checkpoint_path) # print("global step: ", global_step.eval()) else: print("Could not find old network weights") # Start the queue runners. tf.train.start_queue_runners(sess=sess) # summary_writer = tf.train.SummaryWriter(FLAGS.save_dir, sess.graph) summary_writer = tf.summary.FileWriter(FLAGS.save_dir, sess.graph) for step in xrange(FLAGS.max_steps): start_time = time.time() _, loss_value = sess.run([train_op, loss]) duration = time.time() - start_time assert not np.isnan(loss_value), 'Model diverged with loss = NaN' if step % 10 == 0: num_examples_per_step = FLAGS.batch_size examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) format_str = ( '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print(format_str % (datetime.now(), step, loss_value, examples_per_sec, sec_per_batch)) if step % 100 == 0: # eval_rmse = do_eval(sess) # print('eval rmse: ',eval_rmse ) summary_str = sess.run(summary_op) summary_writer.add_summary(summary_str, step) # Save the model checkpoint periodically. if step % 1000 == 0 or (step + 1) == FLAGS.max_steps: checkpoint_path = os.path.join(FLAGS.save_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step)