예제 #1
0
    def test_learning(self):
        pol_net = PolNet(self.env.ob_space, self.env.ac_space, h1=32, h2=32)
        pol = GaussianPol(self.env.ob_space, self.env.ac_space, pol_net)

        targ_pol_net = PolNet(self.env.ob_space, self.env.ac_space, 32, 32)
        targ_pol_net.load_state_dict(pol_net.state_dict())
        targ_pol = GaussianPol(
            self.env.ob_space, self.env.ac_space, targ_pol_net)

        qf_net = QNet(self.env.ob_space, self.env.ac_space, h1=32, h2=32)
        qf = DeterministicSAVfunc(self.env.ob_space, self.env.ac_space, qf_net)

        targ_qf_net = QNet(self.env.ob_space, self.env.ac_space, 32, 32)
        targ_qf_net.load_state_dict(targ_qf_net.state_dict())
        targ_qf = DeterministicSAVfunc(
            self.env.ob_space, self.env.ac_space, targ_qf_net)

        sampler = EpiSampler(self.env, pol, num_parallel=1)

        optim_pol = torch.optim.Adam(pol_net.parameters(), 3e-4)
        optim_qf = torch.optim.Adam(qf_net.parameters(), 3e-4)

        epis = sampler.sample(pol, max_steps=32)

        traj = Traj()
        traj.add_epis(epis)

        traj = ef.add_next_obs(traj)
        traj.register_epis()

        result_dict = svg.train(
            traj, pol, targ_pol, qf, targ_qf, optim_pol, optim_qf, 1, 32, 0.01, 0.9, 1)

        del sampler
예제 #2
0
    def test_learning(self):
        ob_space = self.env.real_observation_space
        skill_space = self.env.skill_space
        ob_skill_space = self.env.observation_space
        ac_space = self.env.action_space
        ob_dim = ob_skill_space.shape[0] - 4
        f_dim = ob_dim
        def discrim_f(x): return x

        pol_net = PolNet(ob_skill_space, ac_space)
        pol = GaussianPol(ob_skill_space, ac_space, pol_net)
        qf_net1 = QNet(ob_skill_space, ac_space)
        qf1 = DeterministicSAVfunc(ob_skill_space, ac_space, qf_net1)
        targ_qf_net1 = QNet(ob_skill_space, ac_space)
        targ_qf_net1.load_state_dict(qf_net1.state_dict())
        targ_qf1 = DeterministicSAVfunc(ob_skill_space, ac_space, targ_qf_net1)
        qf_net2 = QNet(ob_skill_space, ac_space)
        qf2 = DeterministicSAVfunc(ob_skill_space, ac_space, qf_net2)
        targ_qf_net2 = QNet(ob_skill_space, ac_space)
        targ_qf_net2.load_state_dict(qf_net2.state_dict())
        targ_qf2 = DeterministicSAVfunc(ob_skill_space, ac_space, targ_qf_net2)
        qfs = [qf1, qf2]
        targ_qfs = [targ_qf1, targ_qf2]
        log_alpha = nn.Parameter(torch.ones(()))

        high = np.array([np.finfo(np.float32).max]*f_dim)
        f_space = gym.spaces.Box(-high, high, dtype=np.float32)
        discrim_net = DiaynDiscrimNet(
            f_space, skill_space, h_size=100, discrim_f=discrim_f)
        discrim = DeterministicSVfunc(f_space, discrim_net)

        optim_pol = torch.optim.Adam(pol_net.parameters(), 1e-4)
        optim_qf1 = torch.optim.Adam(qf_net1.parameters(), 3e-4)
        optim_qf2 = torch.optim.Adam(qf_net2.parameters(), 3e-4)
        optim_qfs = [optim_qf1, optim_qf2]
        optim_alpha = torch.optim.Adam([log_alpha], 1e-4)
        optim_discrim = torch.optim.SGD(discrim.parameters(),
                                        lr=0.001, momentum=0.9)

        off_traj = Traj()
        sampler = EpiSampler(self.env, pol, num_parallel=1)

        epis = sampler.sample(pol, max_steps=200)
        on_traj = Traj()
        on_traj.add_epis(epis)
        on_traj = ef.add_next_obs(on_traj)
        on_traj = ef.compute_diayn_rews(
            on_traj, lambda x: diayn_sac.calc_rewards(x, 4, discrim))
        on_traj.register_epis()
        off_traj.add_traj(on_traj)
        step = on_traj.num_step
        log_alpha = nn.Parameter(np.log(0.1)*torch.ones(()))  # fix alpha
        result_dict = diayn_sac.train(
            off_traj, pol, qfs, targ_qfs, log_alpha,
            optim_pol, optim_qfs, optim_alpha,
            step, 128, 5e-3, 0.99, 1, discrim, 4, True)
        discrim_losses = diayn.train(
            discrim, optim_discrim, on_traj, 32, 100, 4)

        del sampler
예제 #3
0
파일: test_algos.py 프로젝트: iory/machina
    def test_learning(self):
        pol_net = PolNet(self.env.ob_space, self.env.ac_space, h1=32, h2=32)
        pol = GaussianPol(self.env.ob_space, self.env.ac_space, pol_net)

        qf_net1 = QNet(self.env.ob_space, self.env.ac_space)
        qf1 = DeterministicSAVfunc(self.env.ob_space, self.env.ac_space,
                                   qf_net1)
        targ_qf_net1 = QNet(self.env.ob_space, self.env.ac_space)
        targ_qf_net1.load_state_dict(qf_net1.state_dict())
        targ_qf1 = DeterministicSAVfunc(self.env.ob_space, self.env.ac_space,
                                        targ_qf_net1)

        qf_net2 = QNet(self.env.ob_space, self.env.ac_space)
        qf2 = DeterministicSAVfunc(self.env.ob_space, self.env.ac_space,
                                   qf_net2)
        targ_qf_net2 = QNet(self.env.ob_space, self.env.ac_space)
        targ_qf_net2.load_state_dict(qf_net2.state_dict())
        targ_qf2 = DeterministicSAVfunc(self.env.ob_space, self.env.ac_space,
                                        targ_qf_net2)

        qfs = [qf1, qf2]
        targ_qfs = [targ_qf1, targ_qf2]

        log_alpha = nn.Parameter(torch.zeros(()))

        sampler = EpiSampler(self.env, pol, num_parallel=1)

        optim_pol = torch.optim.Adam(pol_net.parameters(), 3e-4)
        optim_qf1 = torch.optim.Adam(qf_net1.parameters(), 3e-4)
        optim_qf2 = torch.optim.Adam(qf_net2.parameters(), 3e-4)
        optim_qfs = [optim_qf1, optim_qf2]
        optim_alpha = torch.optim.Adam([log_alpha], 3e-4)

        epis = sampler.sample(pol, max_steps=32)

        traj = Traj()
        traj.add_epis(epis)

        traj = ef.add_next_obs(traj)
        traj.register_epis()

        result_dict = sac.train(
            traj,
            pol,
            qfs,
            targ_qfs,
            log_alpha,
            optim_pol,
            optim_qfs,
            optim_alpha,
            2,
            32,
            0.01,
            0.99,
            2,
        )

        del sampler
예제 #4
0
    def test_learning(self):
        pol_net = PolNet(self.env.observation_space,
                         self.env.action_space,
                         h1=32,
                         h2=32,
                         deterministic=True)
        noise = OUActionNoise(self.env.action_space)
        pol = DeterministicActionNoisePol(self.env.observation_space,
                                          self.env.action_space, pol_net,
                                          noise)

        targ_pol_net = PolNet(self.env.observation_space,
                              self.env.action_space,
                              32,
                              32,
                              deterministic=True)
        targ_pol_net.load_state_dict(pol_net.state_dict())
        targ_noise = OUActionNoise(self.env.action_space)
        targ_pol = DeterministicActionNoisePol(self.env.observation_space,
                                               self.env.action_space,
                                               targ_pol_net, targ_noise)

        qf_net = QNet(self.env.observation_space,
                      self.env.action_space,
                      h1=32,
                      h2=32)
        qf = DeterministicSAVfunc(self.env.observation_space,
                                  self.env.action_space, qf_net)

        targ_qf_net = QNet(self.env.observation_space, self.env.action_space,
                           32, 32)
        targ_qf_net.load_state_dict(targ_qf_net.state_dict())
        targ_qf = DeterministicSAVfunc(self.env.observation_space,
                                       self.env.action_space, targ_qf_net)

        sampler = EpiSampler(self.env, pol, num_parallel=1)

        optim_pol = torch.optim.Adam(pol_net.parameters(), 3e-4)
        optim_qf = torch.optim.Adam(qf_net.parameters(), 3e-4)

        epis = sampler.sample(pol, max_steps=32)

        traj = Traj()
        traj.add_epis(epis)

        traj = ef.add_next_obs(traj)
        traj.register_epis()

        result_dict = ddpg.train(traj, pol, targ_pol, qf, targ_qf, optim_pol,
                                 optim_qf, 1, 32, 0.01, 0.9)

        del sampler
예제 #5
0
    def test_learning(self):
        qf_net = QNet(self.env.observation_space, self.env.action_space, 32,
                      32)
        lagged_qf_net = QNet(self.env.observation_space, self.env.action_space,
                             32, 32)
        lagged_qf_net.load_state_dict(qf_net.state_dict())
        targ_qf1_net = QNet(self.env.observation_space, self.env.action_space,
                            32, 32)
        targ_qf1_net.load_state_dict(qf_net.state_dict())
        targ_qf2_net = QNet(self.env.observation_space, self.env.action_space,
                            32, 32)
        targ_qf2_net.load_state_dict(lagged_qf_net.state_dict())
        qf = DeterministicSAVfunc(self.env.observation_space,
                                  self.env.action_space, qf_net)
        lagged_qf = DeterministicSAVfunc(self.env.observation_space,
                                         self.env.action_space, lagged_qf_net)
        targ_qf1 = CEMDeterministicSAVfunc(self.env.observation_space,
                                           self.env.action_space,
                                           targ_qf1_net,
                                           num_sampling=60,
                                           num_best_sampling=6,
                                           num_iter=2,
                                           multivari=False)
        targ_qf2 = DeterministicSAVfunc(self.env.observation_space,
                                        self.env.action_space, targ_qf2_net)

        pol = ArgmaxQfPol(self.env.observation_space,
                          self.env.action_space,
                          targ_qf1,
                          eps=0.2)

        sampler = EpiSampler(self.env, pol, num_parallel=1)

        optim_qf = torch.optim.Adam(qf_net.parameters(), 3e-4)

        epis = sampler.sample(pol, max_steps=32)

        traj = Traj()
        traj.add_epis(epis)
        traj = ef.add_next_obs(traj)
        traj.register_epis()

        result_dict = qtopt.train(traj, qf, lagged_qf, targ_qf1, targ_qf2,
                                  optim_qf, 1000, 32, 0.9999, 0.995, 'mse')

        del sampler
예제 #6
0
파일: run_ddpg.py 프로젝트: iory/machina
pol_net = PolNet(ob_space, ac_space, args.h1, args.h2, deterministic=True)
noise = OUActionNoise(ac_space)
pol = DeterministicActionNoisePol(ob_space, ac_space, pol_net, noise)

targ_pol_net = PolNet(ob_space, ac_space, args.h1, args.h2, deterministic=True)
targ_pol_net.load_state_dict(pol_net.state_dict())
targ_noise = OUActionNoise(ac_space.shape)
targ_pol = DeterministicActionNoisePol(
    ob_space, ac_space, targ_pol_net, targ_noise)

qf_net = QNet(ob_space, ac_space, args.h1, args.h2)
qf = DeterministicSAVfunc(ob_space, ac_space, qf_net)

targ_qf_net = QNet(ob_space, ac_space, args.h1, args.h2)
targ_qf_net.load_state_dict(qf_net.state_dict())
targ_qf = DeterministicSAVfunc(ob_space, ac_space, targ_qf_net)

sampler = EpiSampler(env, pol, num_parallel=args.num_parallel, seed=args.seed)

optim_pol = torch.optim.Adam(pol_net.parameters(), args.pol_lr)
optim_qf = torch.optim.Adam(qf_net.parameters(), args.qf_lr)

off_traj = Traj(args.max_steps_off)

total_epi = 0
total_step = 0
max_rew = -1e6

while args.max_epis > total_epi:
    with measure('sample'):
예제 #7
0
파일: run_qtopt.py 프로젝트: yumion/machina
set_device(device)

score_file = os.path.join(args.log, 'progress.csv')
logger.add_tabular_output(score_file)

env = GymEnv(args.env_name,
             log_dir=os.path.join(args.log, 'movie'),
             record_video=args.record)
env.env.seed(args.seed)

observation_space = env.observation_space
action_space = env.action_space

qf_net = QNet(observation_space, action_space, args.h1, args.h2)
lagged_qf_net = QNet(observation_space, action_space, args.h1, args.h2)
lagged_qf_net.load_state_dict(qf_net.state_dict())
targ_qf1_net = QNet(observation_space, action_space, args.h1, args.h2)
targ_qf1_net.load_state_dict(qf_net.state_dict())
targ_qf2_net = QNet(observation_space, action_space, args.h1, args.h2)
targ_qf2_net.load_state_dict(lagged_qf_net.state_dict())
qf = DeterministicSAVfunc(observation_space,
                          action_space,
                          qf_net,
                          data_parallel=args.data_parallel)
lagged_qf = DeterministicSAVfunc(observation_space,
                                 action_space,
                                 lagged_qf_net,
                                 data_parallel=args.data_parallel)
targ_qf1 = CEMDeterministicSAVfunc(observation_space,
                                   action_space,
                                   targ_qf1_net,
예제 #8
0
pol_net = PolNet(ob_space, ac_space)
pol = GaussianPol(ob_space,
                  ac_space,
                  pol_net,
                  data_parallel=args.data_parallel,
                  parallel_dim=0)

qf_net1 = QNet(ob_space, ac_space)
qf1 = DeterministicSAVfunc(ob_space,
                           ac_space,
                           qf_net1,
                           data_parallel=args.data_parallel,
                           parallel_dim=0)
targ_qf_net1 = QNet(ob_space, ac_space)
targ_qf_net1.load_state_dict(qf_net1.state_dict())
targ_qf1 = DeterministicSAVfunc(ob_space,
                                ac_space,
                                targ_qf_net1,
                                data_parallel=args.data_parallel,
                                parallel_dim=0)

qf_net2 = QNet(ob_space, ac_space)
qf2 = DeterministicSAVfunc(ob_space,
                           ac_space,
                           qf_net2,
                           data_parallel=args.data_parallel,
                           parallel_dim=0)
targ_qf_net2 = QNet(ob_space, ac_space)
targ_qf_net2.load_state_dict(qf_net2.state_dict())
targ_qf2 = DeterministicSAVfunc(ob_space,
예제 #9
0
# Gymのenviromentを生成
from pybullet_envs.bullet.racecarGymEnv import RacecarGymEnv
env = RacecarGymEnv(renders=False, isDiscrete=False)
# 観測と行動の次元
observation_space = env.observation_space
action_space = env.action_space

# Q-Network
qf_net = QNet(observation_space, action_space, args.h1, args.h2)
qf = DeterministicSAVfunc(
    observation_space, action_space, qf_net,
    data_parallel=args.data_parallel)  # 決定的行動状態価値関数?q-netの出力の形を少し整える

# target Q network theta1
targ_qf1_net = QNet(observation_space, action_space, args.h1, args.h2)
targ_qf1_net.load_state_dict(qf_net.state_dict())  # model(重み)をロード(q-netからコピー)
targ_qf1 = CEMDeterministicSAVfunc(
    observation_space,
    action_space,
    targ_qf1_net,
    num_sampling=args.num_sampling,
    num_best_sampling=args.num_best_sampling,
    num_iter=args.num_iter,
    multivari=args.multivari,
    data_parallel=args.data_parallel,
    save_memory=args.save_memory)  #CrossEntropy Methodよくわからん

# lagged network
lagged_qf_net = QNet(observation_space, action_space, args.h1, args.h2)
lagged_qf_net.load_state_dict(
    qf_net.state_dict())  # model(重み)をロード(theta1からコピー)
예제 #10
0
def main():
    pygame.init()  # 初期化
    (w, h) = (480, 320)
    screen = pygame.display.set_mode((w, h), FULLSCREEN)  # window size
    pygame.display.set_caption("Sikamaru")  # window bar

    # initialization
    tx = 0
    ty = 0
    sika = Sikamaru((w / 2, h / 2))
    sleep_count = 5
    eat_mode = 100
    esa = Food()
    wait = True
    seed = 42

    # TODO define RL agent
    '''
    state : 4D (sikaposi, esaposi)
    action : 2D (-20,+20)^2
    SAC
    simple_net : 30,30
    '''
    np.random.seed(seed)
    torch.manual_seed(seed)

    low = np.zeros(4)
    high = w * np.ones(4)
    ob_space = gym.spaces.Box(low=low, high=high)
    ac_space = gym.spaces.Discrete(4)
    ac_dict = {
        0: np.array([-20, 0]),
        1: np.array([20, 0]),
        2: np.array([0, -20]),
        3: np.array([0, 20])
    }
    pol_net = PolNet(ob_space, ac_space)
    pol = CategoricalPol(ob_space, ac_space, pol_net)
    qf_net1 = QNet(ob_space, ac_space)
    qf1 = DeterministicSAVfunc(ob_space, ac_space, qf_net1)
    targ_qf_net1 = QNet(ob_space, ac_space)
    targ_qf_net1.load_state_dict(qf_net1.state_dict())
    targ_qf1 = DeterministicSAVfunc(ob_space, ac_space, targ_qf_net1)
    qf_net2 = QNet(ob_space, ac_space)
    qf2 = DeterministicSAVfunc(ob_space, ac_space, qf_net2)
    targ_qf_net2 = QNet(ob_space, ac_space)
    targ_qf_net2.load_state_dict(qf_net2.state_dict())
    targ_qf2 = DeterministicSAVfunc(ob_space, ac_space, targ_qf_net2)
    qfs = [qf1, qf2]
    targ_qfs = [targ_qf1, targ_qf2]
    log_alpha = nn.Parameter(torch.ones(()))

    optim_pol = torch.optim.Adam(pol_net.parameters(), 1e-4)
    optim_qf1 = torch.optim.Adam(qf_net1.parameters(), 3e-4)
    optim_qf2 = torch.optim.Adam(qf_net2.parameters(), 3e-4)
    optim_qfs = [optim_qf1, optim_qf2]
    optim_alpha = torch.optim.Adam([log_alpha], 1e-4)

    # off_traj = Traj()

    while (True):
        screen.fill((
            0,
            100,
            0,
        ))  # backgroud color

        # my procedure
        ## env
        obs = make_obs((tx, ty), sika.posi, w, h)
        ac_real, ac, a_i = pol.deterministic_ac_real(
            torch.tensor(obs, dtype=torch.float))
        # ac_real = ac_real.reshape(pol.ac_space.shape)
        a = rule_act((tx, ty), sika.posi)
        # a = ac_dict[int(ac_real)]

        nx = sika.posi[0] + a[0]
        nx = max(min(nx, w), 0)
        ny = sika.posi[1] + a[1]
        ny = max(min(ny, h), 0)

        sika.move((nx, ny))
        screen.blit(sika.get_im(), sika.rect)

        if esa.life:  # RL
            # TOOD:record as epi

            screen.blit(esa.im, esa.rect)
            # scr
            rew = esa.life_step(sika)
            if rew > 0:
                sika.bigup()
            if esa.life == 0:
                pass
                #TODO add one epi and learn

                wait = False

        if wait:
            pygame.time.wait(500)
        wait = True
        pygame.display.update()  # 画面更新

        ## event
        for event in pygame.event.get():
            if event.type == MOUSEBUTTONDOWN and event.button == 1:
                tx, ty = event.pos
                esa.set((tx, ty))
            if event.type == KEYDOWN:
                if event.key == K_ESCAPE:
                    sys.exit()

            if event.type == QUIT:  # 終了処理
                pygame.quit()
                sys.exit()