예제 #1
0
def unscramble(num_im, num_slices, input_file_name, output_file_name):
    interlaced_image_raw = tif_to_array(input_file_name).astype(np.float64)

    ##check to make sure I am divisible by num_im
    num_columns = interlaced_image_raw.shape[-1]
    extra_pixels = num_columns % num_im
    
    if extra_pixels == 0:
        interlaced_image = interlaced_image_raw
    else:
        interlaced_image = interlaced_image_raw[:, :, :num_columns-extra_pixels]
            
    zstacks = num_im * num_slices
    yrows = interlaced_image.shape[-2]
    xcolumns = (interlaced_image.shape[-1]/num_im)

    
    sorted_image_stack = np.zeros((zstacks, yrows, xcolumns), 
                                  dtype= interlaced_image.dtype)
    for j in range(num_slices):
        ##l2r
        for i in range(num_im):
            sorted_image_stack[(j*num_im) + i, :, :] = interlaced_image[j, :, i::num_im]
        ##r2l
        for i in range(num_im):
            sorted_image_stack[(j*num_im) + i, :, :] = interlaced_image[j, :, i::num_im]                
    
    array_to_tif(sorted_image_stack.astype(np.float32), output_file_name)
    
    print "Image 1:", sorted_image_stack.shape, sorted_image_stack.dtype
예제 #2
0
파일: decon.py 프로젝트: tauhideee/msim
def image_filename_to_array(
    image_filename, shape=None, dtype=None,
    verbose=True, config=None, master=None):
    """Load tif (.tif, .tiff extension) and raw binary files (.dat,
    .raw extension). If raw binary, 'dtype' and 'shape' must be specified."""
    if verbose:
        print "Loading %s..."%(os.path.split(image_filename)[1])
    extension = os.path.splitext(image_filename)[1]
    if extension in ('.tif', '.tiff'):
        a, info = tif_to_array(image_filename, return_info=True)
        info = dict([x.split('=') for x in info['description'].split('\n')
                if len(x.split('=')) > 1])
        if verbose and int(info.get('channels', 1)) > 1:
            print "Image data seems to be an ImageJ hyperstack",
            print " with multiple colors."
            channels = int(info['channels'])
        else:
            channels = 1
        return a, channels
    elif extension in ('.raw', '.dat'):
        if (shape is None) or (dtype is None):
            info = get_image_info(
                image_filename, config=config, master=master)
            if info == 'cancelled':
                return 'cancelled', None
            xy_shape, dtype_name = info
            config.set('File', 'last_leftright_shape', repr(xy_shape[1]))
            config.set('File', 'last_updown_shape', repr(xy_shape[0]))
            config.set('File', 'last_dtype', dtype_name)
            save_config(config)
            dtype = {
                'uint8': numpy.uint8,
                'uint16': numpy.uint16,
                'uint32': numpy.uint32,
                'float32': numpy.float32,
                'float64': numpy.float64,
                }[dtype_name]
        else:
            xy_shape = shape[1:]
        data = numpy.fromfile(image_filename, dtype=dtype)
        try:
            data = data.reshape(
                (data.size // (xy_shape[0] * xy_shape[1]),) + xy_shape)
        except ValueError:
            print xy_shape, dtype
            raise UserWarning("The given shape and datatype do not match" +
                              " the size of %s"%(
                                  os.path.split(image_filename)[1]))
        return data, 1 #Multi-channel raw is probably to be avoided
    else:
        raise UserWarning("Extension '%s' not recognized.\n"%(extension) +
                          "File extension must be one of:\n"
                          " ('.tif', '.tiff', '.raw', '.dat').")
예제 #3
0
    def initialize_volume(self):
        
        volume_voltages = np.zeros((30000, self.daq.num_mutable_channels),
            dtype=np.float64)

        ##objective starts where it was
        objective_voltage = self.daq.default_voltages[-1, n2c['objective']]
        volume_voltages[:, n2c['objective']] = objective_voltage

        ##objective does loaded scan
        loaded_signal = tif_to_array(
            filename='input_voltage_objective_01.tif').astype(
                np.float64).ravel()
        loaded_signal += objective_voltage
        volume_voltages[:22500, n2c['objective']] = loaded_signal[:]
        print "min", oh_snap_voltages[:, n2c['objective']].min()
        print "max", oh_snap_voltages[:, n2c['objective']].max()

        ##excitation galvo starts where it was
        galvo_voltage = self.daq.default_voltages[-1, n2c['excitation_scan']]
        volume_voltages[:, n2c['excitation_scan']] = galvo_voltage

        ##excitation galvo scans illumination
        galvo_voltage[5000:10000] = np.linspace(
            galvo_voltage, galvo_voltage + 0.2, 5000)
        galvo_voltage[10000:12500] = galvo_voltage + 0.2
        galvo_voltage[12500:17500] = np.linspace(
            galvo_voltage + 0.2, galvo_voltage, 5000)

        ##murrcle stays at what it was
        murrcle_voltage = self.daq.default_voltages[-1, n2c['emission_scan']]
        oh_snap_voltages[:, n2c['emission_scan']] = murrcle_voltage
        
        #Camera triggers at the start of a write
        oh_snap_voltages[:self.daq.write_length//4, n2c['camera']] = 3
        
        #AOTF fires on one perpendicular facet
        
        start_point_laser = (#Integer num of writes plus a perp facet time
            self.daq.perpendicular_facet_times[6] + self.illumination_offset+
            self.daq.write_length * int(roll_time * 1.0 /
                                        self.daq.write_length))
        oh_snap_voltages[start_point_laser:start_point_laser+self.illumination_length, n2c['488']] = 10
        oh_snap_voltages[start_point_laser:start_point_laser+self.illumination_length, n2c['blanking']] = 10

##        oh_snap_voltages[start_point_laser, n2c['blanking']] = 10
        time.sleep(1)

        """
        let's test the objective impulse response
        """
##        marker = start_point_laser
##        scan = np.linspace(5, 6, 5000)        
##        oh_snap_voltages[marker:(marker+5000), n2c['objective']] = scan
##        marker += 5000
##        oh_snap_voltages[marker:(
##            marker+2500), n2c['objective']] = 6
##        marker += 2500
##        oh_snap_voltages[marker:(
##            marker+5000), n2c['objective']] = np.linspace(6,5,5000)
##        marker += 5000        
        
##        loaded_signal = tif_to_array(
##            filename='input_voltage_objective_00.tif').astype(
##                np.float64).ravel()
##        loaded_signal += objective_voltage
##        oh_snap_voltages[:22500, n2c['objective']] = loaded_signal[:]
##        print "min", oh_snap_voltages[:, n2c['objective']].min()
##        print "max", oh_snap_voltages[:, n2c['objective']].max()
##
##        loaded_desired_signal = tif_to_array(
##            filename='desired_result_objective.tif').astype(
##                np.float64).ravel()
##        loaded_desired_signal += objective_voltage
##        loaded_desired_signal[0] += 1
##        oh_snap_voltages[:, n2c['561']] = objective_voltage
##        oh_snap_voltages[:22500, n2c['561']] = loaded_desired_signal[:]
        
        print oh_snap_voltages.shape
        self.daq.send_voltage(oh_snap_voltages, 'snap')
        return None
예제 #4
0
    def initialize_characterize(self):
        """
        Create the murrrcle signal up here. All we care about is how
        many DAQ points long it is.
        """
##        impulse_strength = 1
##        num_periods = 4
##        daq_timepoints_per_period = 1500
##        amplitude_volts = 0.1
##        murrcle_signal = np.sin(np.linspace(
##            0, 2*np.pi*num_periods, num_periods * daq_timepoints_per_period))
##        murrcle_signal[:daq_timepoints_per_period] = 0
##        murrcle_signal[-daq_timepoints_per_period:] = 0
        murrcle_signal = np.zeros(20000, dtype=np.float64)
        default_murrcle = self.daq.default_voltages[-1, n2c['emission_scan']]
        murrcle_signal[:] = default_murrcle
##        murrcle_signal[1000:1152] = 0.05
##        murrcle_signal[1152:-1000] = 0.1
##        murrcle_signal[200:204] = default_murrcle + impulse_strength


        """
        Read in an arbitrary signal from a tif file
        """
        loaded_signal = tif_to_array(
            filename='input_voltage_to_mirror_05.tif').astype(np.float64)
##        loaded_signal += default_murrcle
##        loaded_signal *= 1.75

##
##        loaded_signal[loaded_signal < 0] *= 0.45
##
##        print "Pre Loaded signal min, max:",
##        print loaded_signal.min(), loaded_signal.max()    
##     
        print "Loaded signal min, max:",
        print loaded_signal.min(), loaded_signal.max()
        print
        """
        Put this optimzed waveform into the larger array
        """
        murrcle_signal[:loaded_signal.size] = loaded_signal[:, 0, 0]
        print "Loaded signal size", loaded_signal.size
##        """
##        Smoothly drop the voltage to default; hopefully this reduces ringing.
##        """
##        murrcle_signal[loaded_signal.size:2*(loaded_signal.size)
##                       ] = np.linspace(
##                           loaded_signal[-1, 0, 0],
##                           default_murrcle,
##                           loaded_signal.size)
##        print "last value for signal" , loaded_signal[-1, 0 , 0]
##        print murrcle_signal[loaded_signal.size * 1.5] #Remove this soon
##        
        self.characterization_points = murrcle_signal.size

        delay_points = max(#Figure out the limiting factor
            murrcle_signal.size,
            1e-6 * self.get_camera_rolling_time_microseconds() * self.daq.rate)
        start_point_laser = (#Integer num of writes plus a perp facet time
            self.daq.perpendicular_facet_times[0] +
            self.daq.write_length * int(np.ceil(delay_points * 1.0 /
                                                self.daq.write_length)))
        assert (self.exposure_time_microseconds * 1e6 >=
                start_point_laser * 1.0 / self.daq.rate)
        voltage = np.zeros(((start_point_laser +  murrcle_signal.shape[0]),
                            self.daq.num_mutable_channels),
                           dtype=np.float64)
        
        """
        Trigger the camera
        """
        voltage[:self.daq.write_length//4, n2c['camera']] = 3
        """
        Trigger the laser
        """
        voltage[start_point_laser, n2c['488']] = 10
        voltage[start_point_laser, n2c['blanking']] = 10
        """
        Wiggle the murrrrcle
        """
        print "murrcle_Signal[0]", murrcle_signal[0]
        print "murrcle_Signal[-1]", murrcle_signal[-1]
        print "default murrcle", default_murrcle
##        assert murrcle_signal[0] == default_murrcle
        assert murrcle_signal[-1] == default_murrcle
        voltage[:, n2c['emission_scan']] = default_murrcle
        voltage[-murrcle_signal.size:, n2c['emission_scan']] = murrcle_signal
        print "Impulse starts at DAQ pixel:",
        print voltage.size - murrcle_signal.size + 250
        
        """
        Objective stays at what it was
        """
        objective_voltage = self.daq.default_voltages[-1, n2c['objective']]
        voltage[:, n2c['objective']] = objective_voltage
        """
        Excitation Galvo stays at what it was
        """
        galvo_voltage = self.daq.default_voltages[-1, n2c['excitation_scan']]
        voltage[:, n2c['excitation_scan']] = galvo_voltage

        self.daq.send_voltage(voltage, 'characterize')
        
        return None
예제 #5
0
    for s, sig in enumerate(sigmas):
        density += gaussian_filter(multiview_data[s, :, :], sigma=sig)
    density *= 1.0 / len(sigmas)
    return density

def multiview_data_to_visualization(multiview_data, outfile=None):
    if outfile is not None:
        array_to_tif(multiview_data.astype(np.float32), outfile)
    return multiview_data

"""
Load and truncate the object
"""
print "Loading resolution_target.tif..."
actual_object = tif_to_array('resolution_target.tif'
                             )[0, :, :].astype(np.float64)
print "Done loading."
print "Apodizing resolution target..."
mask = np.zeros_like(actual_object)
trim_size = 40
blur_size = 10
mask[trim_size:-trim_size, trim_size:-trim_size] = 1
gaussian_filter(mask, sigma=blur_size, output=mask)
array_to_tif(
    mask.reshape((1,)+mask.shape).astype(np.float32), outfile='mask.tif')
np.multiply(actual_object, mask, out=actual_object)
print "Done apodizing."

"""
Generate noiseless data
"""
    for m in range(msim_data.shape[2]):
        for n in range(msim_data.shape[3]):
            interpolation.shift(
                input=msim_data[:, :, m, n],
                shift=(0.5*(m - 0.5*msim_data.shape[2]),
                       0.5*(n - 0.5*msim_data.shape[3])),
                output=shifted_msim_data[:, :, m, n],
                order=3)
    shifted_msim_data[shifted_msim_data < 0] = 0 #Interpolation can produce zeros
    return shifted_msim_data

"""
Load and truncate the object
"""
print "Loading resolution_target.tif..."
actual_object = tif_to_array('ladder_complete.tif'
                             )[0, :, :].astype(np.float64)
print "Done loading."
print "Apodizing resolution target..."
mask = np.zeros_like(actual_object)
trim_size = 20#40
blur_size = 2#10
mask[trim_size:-trim_size, trim_size:-trim_size] = 1
gaussian_filter(mask, sigma=blur_size, output=mask)
array_to_tif(
    mask.reshape((1,)+mask.shape).astype(np.float32), outfile='mask.tif')
np.multiply(actual_object, mask, out=actual_object)
print "Done apodizing."

"""
Generate noiseless data
"""
    for m in range(msim_data.shape[2]):
        for n in range(msim_data.shape[3]):
            interpolation.shift(
                input=msim_data[:, :, m, n],
                shift=(0.5*(m - 0.5*msim_data.shape[2]),
                       0.5*(n - 0.5*msim_data.shape[3])),
                output=shifted_msim_data[:, :, m, n],
                order=3)
    shifted_msim_data[shifted_msim_data < 0] = 0 #Interpolation can produce zeros
    return shifted_msim_data

"""
Load and truncate the object
"""
print "Loading resolution_target.tif..."
actual_object = tif_to_array('lena_gray.tif'
                             )[0, :, :].astype(np.float64)
print "Done loading."
print "Apodizing resolution target..."
mask = np.zeros_like(actual_object)
trim_size = 40
blur_size = 10
mask[trim_size:-trim_size, trim_size:-trim_size] = 1
gaussian_filter(mask, sigma=blur_size, output=mask)
array_to_tif(
    mask.reshape((1,)+mask.shape).astype(np.float32), outfile='mask.tif')
np.multiply(actual_object, mask, out=actual_object)
print "Done apodizing."

"""
Generate noiseless data
"""
예제 #8
0

def result_optimization_units_to_mirror_units(er):
    return (er * 155.0) * scale + shift - 46.0  # Watch out for DC drift here


def result_mirror_units_to_optimization_units(er):
    return (((er - shift + 46.0) * 1.0 / scale)) / 155.0


assert (
    result_mirror_units_to_optimization_units(result_optimization_units_to_mirror_units(1)) == 1.0
)  # Careful! Floats!

if __name__ == "__main__":
    input_voltage = simple_tif.tif_to_array("input_voltage.tif").astype(np.float64)
    expected_result = simple_tif.tif_to_array("expected_result.tif").astype(np.float64)

    simple_tif.array_to_tif(
        voltage_optimization_units_to_mirror_units(input_voltage).astype(np.float32), "input_voltage_to_mirror.tif"
    )
    simple_tif.array_to_tif(
        result_optimization_units_to_mirror_units(expected_result).astype(np.float32), "expected_result_from_chip.tif"
    )

    plt.figure()
    plt.subplot(2, 1, 1)
    plt.plot(voltage_optimization_units_to_mirror_units(input_voltage).ravel(), label="Voltage to mirror")
    plt.grid("on")
    plt.legend()
    plt.subplot(2, 1, 2)
예제 #9
0
        input_voltage_cursor += len_ramp

##plt.figure()
##plt.plot(input_voltage_sample)
##plt.plot(time, desired_result_sample, '.')
##plt.plot(time, H(input_voltage_sample), '.')
##plt.plot(input_voltage_camera)
##plt.plot(time, desired_result_camera, '.')
##plt.plot(time, H(input_voltage_camera), '.')
##plt.show()

naive_input_voltage_sample = input_voltage_sample.copy()
naive_input_voltage_camera = input_voltage_camera.copy()
print "Loading 'input_voltage_sample.tif' and 'input_voltage_camera.tif'..."
try:
    input_voltage_sample = simple_tif.tif_to_array('input_voltage_sample.tif'
                                                   ).ravel().astype(np.float64)
    input_voltage_camera = simple_tif.tif_to_array('input_voltage_camera.tif'
                                                   ).ravel().astype(np.float64)
    print "Initial guess loaded"
except IOError:
    print "Loading failed. Using naive input voltages as initial guess."

iterations = 1000000
regularization = 0.1
plt.close('all')
plt.figure()
for i in range(iterations):
    print 'Iteration', i
    expected_result_sample = H(input_voltage_sample)
    expected_result_camera = H(input_voltage_camera)
    
예제 #10
0
        if not os.path.exists(previous_result_filename):
            raise UserWarning("Result data not found")
        break

print iteration
print "Previous:"
print ' ', previous_input_voltage_filename
print ' ', previous_result_filename
print 'Creating:'
print ' ', new_input_voltage_filename


"""
Load everything in optimization units
"""
previous_input_voltage = simple_tif.tif_to_array(
    previous_input_voltage_filename).ravel().astype(np.float64)
previous_input_voltage = (
    convert_units.voltage_mirror_units_to_optimization_units(
        previous_input_voltage))
if iteration == 0:
    """
    The pre-optimizer isn't allowed to write voltages during the
    linker; this optimizer is. Pad with zeros.
    """
    previous_input_voltage = np.concatenate((previous_input_voltage,
                                             np.zeros(len_linker)))
desired_result = simple_tif.tif_to_array('expected_result.tif'
                                          ).ravel().astype(np.float64)
desired_result = np.concatenate((desired_result,
                                 np.zeros(len_deadzone, dtype=np.float64)))
assert desired_result.size == previous_input_voltage.size + len_deadzone
예제 #11
0
파일: FLSW_Control.py 프로젝트: xufun/msim
    def initialize_characterize(self):
        """
        Create the murrrcle signal up here. All we care about is how
        many DAQ points long it is.
        """
        ##        impulse_strength = 1
        ##        num_periods = 4
        ##        daq_timepoints_per_period = 1500
        ##        amplitude_volts = 0.1
        ##        murrcle_signal = np.sin(np.linspace(
        ##            0, 2*np.pi*num_periods, num_periods * daq_timepoints_per_period))
        ##        murrcle_signal[:daq_timepoints_per_period] = 0
        ##        murrcle_signal[-daq_timepoints_per_period:] = 0
        murrcle_signal = np.zeros(20000, dtype=np.float64)
        default_murrcle = self.daq.default_voltages[-1, n2c['emission_scan']]
        murrcle_signal[:] = default_murrcle
        ##        murrcle_signal[1000:1152] = 0.05
        ##        murrcle_signal[1152:-1000] = 0.1
        ##        murrcle_signal[200:204] = default_murrcle + impulse_strength
        """
        Read in an arbitrary signal from a tif file
        """
        loaded_signal = tif_to_array(
            filename='input_voltage_to_mirror_05.tif').astype(np.float64)
        ##        loaded_signal += default_murrcle
        ##        loaded_signal *= 1.75

        ##
        ##        loaded_signal[loaded_signal < 0] *= 0.45
        ##
        ##        print "Pre Loaded signal min, max:",
        ##        print loaded_signal.min(), loaded_signal.max()
        ##
        print "Loaded signal min, max:",
        print loaded_signal.min(), loaded_signal.max()
        print
        """
        Put this optimzed waveform into the larger array
        """
        murrcle_signal[:loaded_signal.size] = loaded_signal[:, 0, 0]
        print "Loaded signal size", loaded_signal.size
        ##        """
        ##        Smoothly drop the voltage to default; hopefully this reduces ringing.
        ##        """
        ##        murrcle_signal[loaded_signal.size:2*(loaded_signal.size)
        ##                       ] = np.linspace(
        ##                           loaded_signal[-1, 0, 0],
        ##                           default_murrcle,
        ##                           loaded_signal.size)
        ##        print "last value for signal" , loaded_signal[-1, 0 , 0]
        ##        print murrcle_signal[loaded_signal.size * 1.5] #Remove this soon
        ##
        self.characterization_points = murrcle_signal.size

        delay_points = max(  #Figure out the limiting factor
            murrcle_signal.size,
            1e-6 * self.get_camera_rolling_time_microseconds() * self.daq.rate)
        start_point_laser = (  #Integer num of writes plus a perp facet time
            self.daq.perpendicular_facet_times[0] + self.daq.write_length *
            int(np.ceil(delay_points * 1.0 / self.daq.write_length)))
        assert (self.exposure_time_microseconds * 1e6 >=
                start_point_laser * 1.0 / self.daq.rate)
        voltage = np.zeros(((start_point_laser + murrcle_signal.shape[0]),
                            self.daq.num_mutable_channels),
                           dtype=np.float64)
        """
        Trigger the camera
        """
        voltage[:self.daq.write_length // 4, n2c['camera']] = 3
        """
        Trigger the laser
        """
        voltage[start_point_laser, n2c['488']] = 10
        voltage[start_point_laser, n2c['blanking']] = 10
        """
        Wiggle the murrrrcle
        """
        print "murrcle_Signal[0]", murrcle_signal[0]
        print "murrcle_Signal[-1]", murrcle_signal[-1]
        print "default murrcle", default_murrcle
        ##        assert murrcle_signal[0] == default_murrcle
        assert murrcle_signal[-1] == default_murrcle
        voltage[:, n2c['emission_scan']] = default_murrcle
        voltage[-murrcle_signal.size:, n2c['emission_scan']] = murrcle_signal
        print "Impulse starts at DAQ pixel:",
        print voltage.size - murrcle_signal.size + 250
        """
        Objective stays at what it was
        """
        objective_voltage = self.daq.default_voltages[-1, n2c['objective']]
        voltage[:, n2c['objective']] = objective_voltage
        """
        Excitation Galvo stays at what it was
        """
        galvo_voltage = self.daq.default_voltages[-1, n2c['excitation_scan']]
        voltage[:, n2c['excitation_scan']] = galvo_voltage

        self.daq.send_voltage(voltage, 'characterize')

        return None