def plot_vectors(exp_id, sample, save_file=None): am = AnalyzeManager() am.add_experiment(retrieve_experiment(exp_id)) am.add_analyzer( VectorSpeciesReportAnalyzer(sample, save_file=save_file, channel='Daily HBR')) am.analyze()
# am.add_experiment(retrieve_experiment("15a20ddd-2a36-e811-a2bf-c4346bcb7274")) # facazissa iter5. best 0. 4/1 10:30pm # am.add_experiment(retrieve_experiment("86413a54-0d36-e811-a2bf-c4346bcb7274")) # magude iter3. best 10. 4/1 10:30pm X # am.add_experiment(retrieve_experiment("15a1d9fe-2f36-e811-a2bf-c4346bcb7274")) # mahel iter9. best 0. 4/1 # am.add_experiment(retrieve_experiment("0fc16f8f-2636-e811-a2bf-c4346bcb7274")) # mapulanguene iter9. best 10. 4/1 10:30pm # am.add_experiment(retrieve_experiment("f5873afe-1336-e811-a2bf-c4346bcb7274")) # moine iter6. best 0 4/1 # am.add_experiment(retrieve_experiment("19794550-c135-e811-a2bf-c4346bcb7274")) # motaze iter1. best 15 4/1 # am.add_experiment(retrieve_experiment("e6f8c635-2d36-e811-a2bf-c4346bcb7274")) # panjane iter6. best 0 4/1 # am.add_experiment(retrieve_experiment("6fe0132a-c135-e811-a2bf-c4346bcb7274")) # faca stage1, iter1, best 9 # am.add_experiment(retrieve_experiment("86413a54-0d36-e811-a2bf-c4346bcb7274")) # m-s stage 1. iter3, best 12 # am.add_experiment(retrieve_experiment("eb30545d-e536-e811-a2bf-c4346bcb7274")) # m-s stage 2. ite3, best 6 # am.add_experiment(retrieve_experiment("d4b08d09-1835-e811-a2bf-c4346bcb7274")) #caputine iter12. best 8. # am.add_experiment(retrieve_experiment("0fc97f4a-4634-e811-a2bf-c4346bcb7274")) # chichuco iter0. best 3 # am.add_experiment(retrieve_experiment("f67437d5-4e34-e811-a2bf-c4346bcb7274")) # chicutso iter2. best 3 # am.add_experiment(retrieve_experiment("d7d2a0be-a234-e811-a2bf-c4346bcb7274")) # facazissa iter3. best 12 # am.add_experiment(retrieve_experiment("3240a906-9e33-e811-a2bf-c4346bcb7274")) # magude iter0. best 21. # am.add_experiment(retrieve_experiment("6cd7957f-cb34-e811-a2bf-c4346bcb7274")) # mahel iter6. best 11. # am.add_experiment(retrieve_experiment("0dbd4e00-cc34-e811-a2bf-c4346bcb7274")) # mapulanguene iter8. best 3 # am.add_experiment(retrieve_experiment("777c34a8-dc34-e811-a2bf-c4346bcb7274")) # moine iter6. best 8 # am.add_experiment(retrieve_experiment("5171d868-4634-e811-a2bf-c4346bcb7274")) # motaze iter0. best 11 # am.add_experiment(retrieve_experiment("7a5ab67b-dc34-e811-a2bf-c4346bcb7274")) # panjane iter8. best 17 # am.add_experiment(retrieve_experiment("2ecf9cd7-9c35-e811-a2bf-c4346bcb7274")) #aggregate 2014. iter2, best 20 # am.add_experiment(retrieve_experiment("d8cb3061-ae35-e811-a2bf-c4346bcb7274")) #aggregate 2014,2015. iter2, best 5 am.add_experiment( retrieve_experiment("2f76368f-bc57-e811-a2bf-c4346bcb7274")) am.add_analyzer(PrevAnalyzer(cait_output_mode=True, gatesreview=True)) am.analyze()
if __name__=="__main__": SetupParser.init('HPC') am = AnalyzeManager() # Corrected stepd # am.add_experiment(retrieve_experiment("43cac760-cbd6-e711-9414-f0921c16b9e5")) # bbondo # am.add_experiment(retrieve_experiment("a31b516a-cbd6-e711-9414-f0921c16b9e5")) # chabbobboma # am.add_experiment(retrieve_experiment("1ecdf372-cbd6-e711-9414-f0921c16b9e5")) # chisanga # am.add_experiment(retrieve_experiment("957e6159-32d6-e711-9414-f0921c16b9e5")) # chiyabi # am.add_experiment(retrieve_experiment("9669907b-cbd6-e711-9414-f0921c16b9e5")) # luumbo # am.add_experiment(retrieve_experiment("fbe40809-ccd6-e711-9414-f0921c16b9e5")) # munyumbwe # am.add_experiment(retrieve_experiment("8aadd6a0-cbd6-e711-9414-f0921c16b9e5")) # nyanga chaamwe # am.add_experiment(retrieve_experiment("d18a9aa8-cbd6-e711-9414-f0921c16b9e5")) # sinafala am.add_experiment(retrieve_experiment("d28a9aa8-cbd6-e711-9414-f0921c16b9e5")) # sinamalima # Old MBGSR # am.add_experiment(retrieve_experiment("7f188957-2fe1-e711-9414-f0921c16b9e5")) # bbondo # am.add_experiment(retrieve_experiment("f60d69eb-2fe1-e711-9414-f0921c16b9e5")) # chabbobboma # am.add_experiment(retrieve_experiment("7aa30068-2fe1-e711-9414-f0921c16b9e5")) # chisanga # am.add_experiment(retrieve_experiment("d57bccae-25e1-e711-9414-f0921c16b9e5")) # chiyabi # am.add_experiment(retrieve_experiment("5d5cff6d-2fe1-e711-9414-f0921c16b9e5")) # luumbo # am.add_experiment(retrieve_experiment("cf37cd7b-2fe1-e711-9414-f0921c16b9e5")) # munyumbwe # am.add_experiment(retrieve_experiment("94aa85fb-2fe1-e711-9414-f0921c16b9e5")) # nyanga chaamwe # am.add_experiment(retrieve_experiment("f5c0fb13-30e1-e711-9414-f0921c16b9e5")) # sinafala # am.add_experiment(retrieve_experiment("33b92b39-30e1-e711-9414-f0921c16b9e5")) # sinamalima am.add_analyzer(RDTPrevAnalyzer()) am.analyze()
def plot_RDT(exp_id, sample, save_file=None, **kwargs): am = AnalyzeManager() am.add_experiment(retrieve_experiment(exp_id)) am.add_analyzer( prevalence_plot_analyzer(catch, sample, save_file=save_file, **kwargs)) am.analyze()
plt.tight_layout() # if self.save_file: # # if self.cait_output_mode: # # MozambiqueExperiment.save_figs_for_caitlin(fig,self.save_file) # # else: if not self.save_file: self.save_file = save_file = "figs/{}".format(self.catch) # plt.savefig(self.save_file + ".pdf") # plt.savefig(self.save_file + ".png") # else: plt.show() print("Done!") if __name__ == "__main__": SetupParser.init('HPC') am = AnalyzeManager() # am.add_experiment(retrieve_experiment("0a373d77-1f93-e811-a2c0-c4346bcb7275")) # chichuco # am.add_experiment(retrieve_experiment("0d801fc0-3c92-e811-a2c0-c4346bcb7275")) # chicutso am.add_experiment( retrieve_experiment( "c5c3c5bb-a79c-e811-a2c0-c4346bcb7275")) # magude-sede-facazissa # am.add_experiment(retrieve_experiment("210bcb89-e696-e811-a2c0-c4346bcb7275")) # mahel # am.add_experiment(retrieve_experiment("10238aac-7593-e811-a2c0-c4346bcb7275")) # mapulanguene # am.add_experiment(retrieve_experiment("85bef741-2d97-e811-a2c0-c4346bcb7275")) # moine # am.add_experiment(retrieve_experiment("140fe8a7-1194-e811-a2c0-c4346bcb7275")) # motaze # am.add_experiment(retrieve_experiment("b1c79146-6194-e811-a2c0-c4346bcb7275")) # panjane-caputine am.add_analyzer(PrevAnalyzer()) am.analyze()
# Calibration experiments: # am.add_experiment(retrieve_experiment("09829129-b00b-e811-9415-f0921c16b9e5")) #Mahel # am.add_experiment(retrieve_experiment("11cb8543-e20b-e811-9415-f0921c16b9e5")) #Motaze # am.add_experiment(retrieve_experiment("8853ca79-1c0c-e811-9415-f0921c16b9e5")) # am.add_experiment(retrieve_experiment("171711d2-a010-e811-9415-f0921c16b9e5")) #Caputine # am.add_experiment(retrieve_experiment("632dd6f5-a610-e811-9415-f0921c16b9e5")) # Chicutso # am.add_experiment(retrieve_experiment("ef6564ad-a110-e811-9415-f0921c16b9e5")) # Mahel # am.add_experiment(retrieve_experiment("fd4866f4-a310-e811-9415-f0921c16b9e5")) # Mapulanguene # am.add_experiment(retrieve_experiment("da1bccd2-a910-e811-9415-f0921c16b9e5")) # Moine # am.add_experiment(retrieve_experiment("7e10e1d1-a710-e811-9415-f0921c16b9e5")) # Panjane # am.add_experiment(retrieve_experiment("7e10e1d1-a710-e811-9415-f0921c16b9e5")) # Panjane multi-dose # am.add_experiment(retrieve_experiment("f335b9ab-1f12-e811-9415-f0921c16b9e5")) # Moine DONE # am.add_experiment(retrieve_experiment("8731f656-2a12-e811-9415-f0921c16b9e5")) # Caputine iter6 # am.add_experiment(retrieve_experiment("f3ed1863-2b12-e811-9415-f0921c16b9e5")) # Mahel iter2 # am.add_experiment(retrieve_experiment("62454c29-1212-e811-9415-f0921c16b9e5")) # Panjane iter2 am.add_experiment(retrieve_experiment("354912fd-3612-e811-9415-f0921c16b9e5")) # Motaze iter4 # am.add_experiment(retrieve_experiment("169df5ae-2b12-e811-9415-f0921c16b9e5")) # Mapulanguene # pbnb # am.add_experiment(retrieve_experiment("002e8d2d-4e12-e811-9415-f0921c16b9e5")) # Caputine am.add_analyzer(RDTPrevAnalyzer()) am.analyze()
plt.legend() # plt.xlim([3000,7000]) plt.xlim([foo("2010-01-01"), foo("2019-01-01")]) plt.tight_layout() plt.show() # plt.savefig(self.base + "data/figs/{}_prev.png".format(catch)) if __name__ == "__main__": SetupParser.init('HPC') am = AnalyzeManager() # Calibration experiments: am.add_experiment( retrieve_experiment("66f05adf-c10b-e811-9415-f0921c16b9e5")) # hand-fudged Milen habitat params # am.add_experiment(retrieve_experiment("4766b178-f5f4-e711-9414-f0921c16b9e5")) #bbondo # am.add_experiment(retrieve_experiment("34213b5c-f8f4-e711-9414-f0921c16b9e5")) # chabbobboma # am.add_experiment(retrieve_experiment("84d95a7a-faf4-e711-9414-f0921c16b9e5")) # chisanga # am.add_experiment(retrieve_experiment("c6313998-faf4-e711-9414-f0921c16b9e5")) # chiyabi # am.add_experiment(retrieve_experiment("69c0e4de-faf4-e711-9414-f0921c16b9e5")) # luumbo # am.add_experiment(retrieve_experiment("4f045b1b-fbf4-e711-9414-f0921c16b9e5")) # munyumbwe # am.add_experiment(retrieve_experiment("542b05fe-fbf4-e711-9414-f0921c16b9e5")) # nyanga chaamwe (x0.5) # am.add_experiment(retrieve_experiment("b546a866-04f5-e711-9414-f0921c16b9e5")) # nyanga chaamwe (x0.25) # am.add_experiment(retrieve_experiment("a938d951-06f5-e711-9414-f0921c16b9e5")) # nyanga chaamwe (x0.15) # am.add_experiment(retrieve_experiment("47bc7d56-fcf4-e711-9414-f0921c16b9e5")) # sinafala # am.add_experiment(retrieve_experiment("cd2853cf-fcf4-e711-9414-f0921c16b9e5")) # sinamalima # Milen habitat params
# COMPS_experiment_name = suite_name # I want hover-over in COMPS to be the suite name experiment_manager.run_simulations(exp_name=COMPS_experiment_name, exp_builder=experiment_builder, suite_id=suite_id) experiments.append(experiment_manager) experiments_ids.append(experiment_manager.experiment.exp_id) # Dump the experiment ids for resume with open('ids.json', 'w') as out: json.dump(experiments_ids, out) # Every experiments are created at this point -> Analyze am = AnalyzeManager(verbose=False, create_dir_map=False) for em in experiments: am.add_experiment(em.experiment) # am.add_analyzer(DownloadAnalyzerTPI(['output\\DemographicsSummary.json', 'config.json', 'output\\ReportHIVART.csv', 'output\\ReportHIVByAgeAndGender.csv'], # output_dir='Test HIV 1')) am.add_analyzer( DownloadAnalyzerTPI(['output\\ReportHIVByAgeAndGender.csv'], output_dir='Nyanza Base Case')) # While the experiments are running, we are analyzing every 15 seconds while not all([em.finished() for em in experiments]): map(lambda e: e.refresh_experiment(), experiments) print("Analyzing !") am.analyze() print("Waiting 15 seconds") time.sleep(15) # Analyze one last time when everything is complete
int(x["year"]) + 2010, str(int(x["month"])).zfill(2)), axis=1) # print("mdate") df["mdate"] = df.apply(lambda x: date_to_mdate(x["date"]), axis=1) # print("plot") # ax.plot(df["year"] * 12 + df["month"], df["cases"], *args, **kwargs) ax.plot_date(df["mdate"], df["cases"], *args, **kwargs) ax.set_xlabel("Date") ax.set_ylabel("Cases") ax.set_xlim([date_to_mdate("2010-01-01"), date_to_mdate("2017-01-01")]) # ax.tick_params(direction="inout") def uid(self): ''' A unique identifier of site-name and analyzer-name. ''' return '_'.join([self.site.name, self.name]) if __name__ == "__main__": SetupParser.init('HPC') am = AnalyzeManager() # Calibration experiments: am.add_experiment( retrieve_experiment("a0bee2bd-f8b5-e811-a2c0-c4346bcb7275")) am.add_analyzer(incidence_likelihood(zambia_calib_site("bbondo"))) am.analyze()
for exp_id in self.pop_data.keys(): plt.plot( np.array(self.raw_pop_data[exp_id][-2]) / self.tot_pop[exp_id][-2]) ax.set_title("Late") ax.set_xticks(range(24)) ax.set_xticklabels(self.age_bins) plt.show() # # for exp_id in self.pop_data.keys(): # plt.plot_date(self.report_times, self.pop_data[exp_id],fmt='-',c=c,linewidth=lw,label=label,alpha=0.4) # plt.plot_date(self.report_times, self.pop_data[exp_id], fmt='-', c=c, linewidth=lw, label=label, alpha=0.4) # plt.plot_date(self.report_times, self.pop_data[exp_id], fmt='-', c=c, linewidth=lw, label=label, alpha=0.4) # plt.plot_date(self.report_times, self.pop_data[exp_id], fmt='-', c=c, linewidth=lw, label=label, alpha=0.4) # plt.legend([s['environment'] for s in self.metadata.values()]) if __name__ == "__main__": SetupParser.init('HPC') am = AnalyzeManager() am.add_experiment( retrieve_experiment("f4ecdcc6-768c-e711-9401-f0921c16849d")) # L1 # am.add_experiment(retrieve_experiment("001a9f44-758c-e711-9401-f0921c16849d")) # L5 am.add_experiment( retrieve_experiment("4188b9de-e28c-e711-9401-f0921c16849d")) # L6 am.add_analyzer(AgeStratificationAnalyzer()) am.analyze()
# # c1 = green = IRS # # c2 = red = MSAT # # c3 = purple = MDA plt.legend() # plt.xlim([3000,7000]) plt.xlim([foo("2010-01-01"), foo("2019-01-01")]) # plt.show() plt.tight_layout() plt.savefig(base + "data/figs/{}_prev_node.png".format(catch)) if __name__ == "__main__": SetupParser.init('HPC') am = AnalyzeManager() # am.add_experiment(retrieve_experiment("43cac760-cbd6-e711-9414-f0921c16b9e5")) # bbondo # am.add_experiment(retrieve_experiment("a31b516a-cbd6-e711-9414-f0921c16b9e5")) # chabbobboma # am.add_experiment(retrieve_experiment("1ecdf372-cbd6-e711-9414-f0921c16b9e5")) # chisanga # am.add_experiment(retrieve_experiment("957e6159-32d6-e711-9414-f0921c16b9e5")) # chiyabi # am.add_experiment(retrieve_experiment("9669907b-cbd6-e711-9414-f0921c16b9e5")) # luumbo # am.add_experiment(retrieve_experiment("fbe40809-ccd6-e711-9414-f0921c16b9e5")) # munyumbwe am.add_experiment( retrieve_experiment( "8aadd6a0-cbd6-e711-9414-f0921c16b9e5")) # nyanga chaamwe # am.add_experiment(retrieve_experiment("d18a9aa8-cbd6-e711-9414-f0921c16b9e5")) # sinafala # am.add_experiment(retrieve_experiment("d28a9aa8-cbd6-e711-9414-f0921c16b9e5")) # sinamalima am.add_analyzer(RDTPrevAnalyzer()) am.analyze()
def finalize(self): # print self.my_data print("") def plot(self): import matplotlib.pyplot as plt # Plot histogram of trips for sim_id, data in self.n_trips.items(): # data only contains data for travellers. Need to add in "zero trips" for everyone who didn't travel. n_couch = self.pop_init[sim_id] - self.n_travellers[sim_id] full_data = np.append(data, np.zeros(int(n_couch))) plt.hist(full_data,histtype='stepfilled',alpha=0.4,log=True, label=self.metadata[sim_id]) plt.legend() plt.show() if __name__=="__main__": SetupParser.init('HPC') am = AnalyzeManager() am.add_experiment(retrieve_experiment("151f8b4b-867c-e711-9401-f0921c16849d")) am.add_analyzer(MigrationAnalyzer()) am.analyze()
date_to_mdate("2013-01-01"), date_to_mdate("2014-01-01"), date_to_mdate("2015-01-01"), date_to_mdate("2016-01-01"), date_to_mdate("2017-01-01"), date_to_mdate("2018-01-01"), date_to_mdate("2019-01-01") ]) # plt.ylim([-0.01,0.25]) plt.ylabel("RDT Prevalence") plt.legend(frameon=True) plt.tight_layout() if self.save_file: plt.savefig(self.save_file + ".pdf") plt.savefig(self.save_file + ".png") else: plt.show() if __name__ == "__main__": am = AnalyzeManager() # am.add_experiment(retrieve_experiment("cdb12c2d-61c3-e811-a2bd-c4346bcb1555")) am.add_experiment( retrieve_experiment("9df3a55a-63c3-e811-a2bd-c4346bcb1555")) # am.add_analyzer(custom_prev_plot_analyzer("chiyabi","C0", 3)) # am.add_analyzer(custom_prev_plot_analyzer("chiyabi","C1", 4)) am.add_analyzer(custom_prev_plot_analyzer("chiyabi", "C2", 5)) # am.add_analyzer(custom_prev_plot_analyzer("chiyabi","C3", 6)) am.analyze()