C0 = readAttribute(experiment_path, ["C0"])["C0"]
        rescaleFactor = readAttribute(experiment_path,
                                      ["rescaleFactor"])["rescaleFactor"]
        output = results[modes.index("outputEqui")]
        output = np.reshape(output, (len(X1), len(X2)))
        X1 = X1 / (C0 * rescaleFactor)
        X2 = X2 / (C0 * rescaleFactor)
        otherActivInitialC = otherActivInitialC / (C0 * rescaleFactor)
        otherInhibInitialC = otherInhibInitialC / (C0 * rescaleFactor)

        # colorDiagram(X1,X2,output,"Initial concentration of X1","Initial concentration of X2","Equilibrium concentration of the output",figname=os.path.join(experiment_path, "neuralDiagramm.png"),equiPotential=False)
        neuronPlot(X1,
                   X2,
                   output,
                   figname=os.path.join(experiment_path,
                                        "activationLogX1.png"),
                   figname2=os.path.join(experiment_path,
                                         "activationLogX2.png"),
                   useLogX=True,
                   doShow=False)
        neuronPlot(X1,
                   X2,
                   output,
                   figname=os.path.join(experiment_path, "activationX1.png"),
                   figname2=os.path.join(experiment_path, "activationX2.png"),
                   useLogX=False,
                   doShow=False)
        df = pandas.DataFrame(X1)
        df.to_csv(os.path.join(experiment_path, "inputX1.csv"))
        df2 = pandas.DataFrame(X2)
        df2.to_csv(os.path.join(experiment_path, "inputX2.csv"))
예제 #2
0
for layer in range(1,len(masks)): ## the first layer need not to be initiliazed
    for node in range(masks[layer].shape[0]):
        initialization_dic["X_"+str(layer)+"_"+str(node)] = layerInit
initialization_dic["E"] = enzymeInit
initialization_dic["E2"] = enzymeInit

results = executeODESimulation(f, name, x_test, initialization_dic, ["X_1_0"], leak, endTime=endTime, sparse=False, modes=modes)

if("outputPlot" in modes):
    import matplotlib.pyplot as plt
    shapeP = len(X1)*len(X2)
    nameDic = results[-1]
    outArrayFullPlot = results[modes.index("output")]
    toObserve=range(0,shapeP,max(int(shapeP/100),1))
    time = np.arange(0,endTime,0.1)
    for t in toObserve:
        plt.figure()
        for idx,k in enumerate(nameDic.keys()):
            if idx in [nameDic["X_1_0"]]:
                plt.plot(time,outArrayFullPlot[t,:,idx],label=k)
                print("the observed min value is "+str(np.min(outArrayFullPlot[t,:,idx]))+" for "+k)
        plt.legend()
        plt.show()

if("outputEqui" in modes):
    experiment_path = name
    C0=readAttribute(experiment_path,["C0"])["C0"]
    output = results[modes.index("output")]
    colorDiagram(X1,X2,output,"Initial concentration of X1","Initial concentration of X2","Equilibrium concentration of the output",figname=os.path.join(experiment_path, "neuralDiagramm.png"),equiPotential=False)
    neuronPlot(X1/C0,X2/C0,output,figname=os.path.join(experiment_path, "activationX1.png"),figname2=os.path.join(experiment_path, "activationX2.png"))
예제 #3
0
def simulModelIndicator(name,
                        nameFig,
                        enzymeInit=10**(-6),
                        activInit=10**(-8),
                        inhibInit=10**(-8),
                        x2val=None,
                        x1val=None,
                        indexSplit=10):
    """
        Generate an indicator using the indicator function after simulating the model over a range of inputs.
    :param name: directory where the network is located
    :param nameFig: directory to store figure
    :param enzymeInit: initial concentration of the enzyme
    :param activInit: initial concentration of the activators
    :param inhibInit: initial concentration of the inhibitors
    :param x2val: if not none, define fix initial concentration value for inhibitors
    :param x1val: if not none, define fix initial concentration value for activators
    :param indexSplit: the size of the test will be two time indexSplit.
    :return:
    """
    endTime = 10000
    timeStep = 0.1
    modes = ["verbose", "outputEqui"]

    leak = 10**(-10)

    layerInit = 10**(-13)  #initial concentation value for species in layers
    initValue = 10**(-13)  #initial concentration value for all species.

    endoInit = 10**(-5)  #only used if useEndo == True

    #generate the first layer concentration:

    if x1val is not None:
        assert x2val is None
        X1 = np.array([x1val])
        X2 = np.concatenate(
            (np.logspace(-8, -6, indexSplit), np.logspace(-6, -4, indexSplit)))
    else:
        assert x2val is not None
        X2 = np.array([x2val])
        X1 = np.concatenate(
            (np.logspace(-8, -6, indexSplit), np.logspace(-6, -4, indexSplit)))
    # generate concentration for all different experiments:
    x_test = []
    for x1 in X1:
        for x2 in X2:
            x_test += [[x1, x2]]
    x_test = np.array(x_test)

    initialization_dic = {}
    for layer in range(
            0, len(masks)):  ## the first layer need not to be initiliazed
        for node in range(masks[layer].shape[0]):
            initialization_dic["X_" + str(layer + 1) + "_" +
                               str(node)] = layerInit
    inhibTemplateNames = obtainTemplateArray(masks=masks, activ=False)
    for k in inhibTemplateNames:
        initialization_dic[k] = inhibInit
    activTemplateNames = obtainTemplateArray(masks=masks, activ=True)
    for k in activTemplateNames:
        initialization_dic[k] = activInit
    initialization_dic["E"] = enzymeInit
    if complexity != "simple":
        initialization_dic["E2"] = enzymeInit
    if complexity != None and useEndo:
        initialization_dic["Endo"] = endoInit

    if useDerivativeLeak:
        results = executeODESimulation(f,
                                       name,
                                       x_test,
                                       initialization_dic,
                                       outputList=outputList,
                                       leak=leak,
                                       endTime=endTime,
                                       sparse=False,
                                       modes=modes,
                                       timeStep=timeStep,
                                       initValue=initValue)
    else:
        results = executeODESimulation(f,
                                       name,
                                       x_test,
                                       initialization_dic,
                                       outputList=outputList,
                                       leak=0,
                                       endTime=endTime,
                                       sparse=False,
                                       modes=modes,
                                       timeStep=timeStep,
                                       initValue=initValue)

    if ("outputEqui" in modes):
        experiment_path = name
        C0 = readAttribute(experiment_path, ["C0"])["C0"]
        rescaleFactor = readAttribute(experiment_path,
                                      ["rescaleFactor"])["rescaleFactor"]
        output = results[modes.index("outputEqui")]
        output = np.reshape(output, (len(X1), len(X2)))

        X1 = X1 / (C0 * rescaleFactor)
        X2 = X2 / (C0 * rescaleFactor)

        X1log = np.log(X1)
        X2log = np.log(X2)

        experiment_path = nameFig
        colorDiagram(X1,
                     X2,
                     output,
                     "Initial concentration of X1",
                     "Initial concentration of X2",
                     "Equilibrium concentration of the output",
                     figname=os.path.join(experiment_path,
                                          "neuralDiagramm.png"),
                     equiPotential=False)
        neuronPlot(X1,
                   X2,
                   output,
                   figname=os.path.join(experiment_path, "activationX1.png"),
                   figname2=os.path.join(experiment_path, "activationX2.png"),
                   doShow=False)
        df = pandas.DataFrame(X1)
        df.to_csv(os.path.join(experiment_path, "inputX1.csv"))
        df2 = pandas.DataFrame(X2)
        df2.to_csv(os.path.join(experiment_path, "inputX2.csv"))

        if x1val is None:
            indicatorValue = indicator(X1log, X1, output[:, 0], indexSplit)
        else:
            indicatorValue = indicator(X2log,
                                       X2,
                                       output[0, :],
                                       indexSplit,
                                       sens=-1,
                                       Xactiv=x1val / (C0 * rescaleFactor))
    else:
        raise Exception("outputEqui should be in outputModes")
    return indicatorValue
예제 #4
0
df=pandas.read_csv(os.path.join(experiment_path, "neural_equilibrium.csv"))
output = df.values[:,1:]
df=pandas.read_csv(os.path.join(experiment_path, "neural_X1.csv"))
X1 = np.transpose(df.values[:,1:])[0]
df=pandas.read_csv(os.path.join(experiment_path, "neural_X2.csv"))
X2 = np.transpose(df.values[:,1:])[0]

C0 = 8.086075400626399e-07
#separate from bad values
X1=X1[:164]/C0
output=output[:164]
X2=X2[:164]/C0

colorDiagram(X1,X2,output,"Concentration of X1","Concentration of X2","Equilibrium concentration of the output",figname=os.path.join(experiment_path, "neuralDiagramm2.png"),equiPotential=False)
# neuronPlot(X1/(8.086075400626399e-07),X2/(8.086075400626399e-07),output,figname=os.path.join(experiment_path, "activation2.png"))
neuronPlot(X1,X2,output,figname=os.path.join(experiment_path, "activationX1.png"),figname2=os.path.join(experiment_path, "activationX2.png"))
# Plotting time:
colorDiagram(X1,X2,np.exp(output),"Concentration of X1","Concentration of X2","Equilibrium concentration of the output",figname=os.path.join(experiment_path, "neuralDiagramm2log.png"),equiPotential=False)
# neuronPlot(X1/(8.086075400626399e-07),X2/(8.086075400626399e-07),output,figname=os.path.join(experiment_path, "activation2.png"))
neuronPlot(X1,X2,np.exp(output),figname=os.path.join(experiment_path, "activationX1log.png"),figname2=os.path.join(experiment_path, "activationX2log.png"))
## Let us plot the frontier:
coords=[]
Xfrontier=[]
X2frontier=[]
for y in range(output.shape[1]):
    for x in range(output.shape[0]-1):
        if(output[x,y]<1 and 2<output[x+1,y]): #we have a discontinuity --> we are on the frontier
            coords+=[[X1[x],X2[y]]]
            Xfrontier+=[[X1[x],output[x+1,y]]]
            X2frontier+=[[X2[y], output[x + 1, y]]]
            break