def synth_circle_noise(infiles, outfiles, NOISE): SIM_DURATION = 30.0 TDELTA = 1 / 30. t = np.arange(0, SIM_DURATION, TDELTA) frames_to_skip = [20, 35, 36, 50, 51, 52, 53] env = util.Environmentz((1.5, 2), (240, 320)) state = simulate.gen_track_circle(t, np.pi * 2 / 10, env, circle_radius=0.5) images = simulate.render(env, state) new_images = simulate.add_noise_background(images, NOISE, NOISE, frames_to_skip) pickle.dump( { 'state': state, 'video': new_images, 'noise': NOISE, 'frames_skipped': frames_to_skip }, open(outfiles[0], 'w')) videotools.dump_grey_movie(outfiles[1], new_images)
def synth_circle_noise(infiles, outfiles, NOISE): SIM_DURATION = 30.0 TDELTA = 1/30. t = np.arange(0, SIM_DURATION, TDELTA) frames_to_skip = [20, 35, 36, 50, 51, 52, 53] env = util.Environmentz((1.5, 2), (240, 320)) state = simulate.gen_track_circle(t, np.pi*2/10, env, circle_radius=0.5) images = simulate.render(env, state) new_images = simulate.add_noise_background(images, NOISE, NOISE, frames_to_skip) pickle.dump({'state' : state, 'video' : new_images, 'noise' : NOISE, 'frames_skipped' : frames_to_skip }, open(outfiles[0], 'w')) videotools.dump_grey_movie(outfiles[1], new_images)
N = len(positions) state = np.zeros(N, dtype=util.DTYPE_STATE) state['x'] = positions_interp['x'] state['y'] = positions_interp['y'] state['phi'] = pos_derived['phi'] state['theta'] = np.pi/2.0 env = util.Environmentz((1.5, 2), (240, 320)) images = simulate.render(env, state[:100]) NOISE = 0 new_images = simulate.add_noise_background(images, NOISE, NOISE, []) FN = 100 pylab.figure() pylab.subplot(2, 1, 1) pylab.plot(state['x'][:FN]) pylab.plot(state['y'][:FN]) pylab.subplot(2, 1, 2) pylab.scatter(positions['led_front'][:FN, 0], positions['led_front'][:FN, 1], c='g') pylab.scatter(positions['led_back'][:FN, 0], positions['led_back'][:FN, 1], c='r') pylab.show() for fi in range(FN): frame_no = start_f + fi frame = tf.extractfile("%08d.jpg" % frame_no)
positions_interp, missing = measure.interpolate(positions) pos_derived = measure.compute_derived(positions_interp) N = len(positions) state = np.zeros(N, dtype=util.DTYPE_STATE) state['x'] = positions_interp['x'] state['y'] = positions_interp['y'] state['phi'] = pos_derived['phi'] state['theta'] = np.pi / 2.0 env = util.Environmentz((1.5, 2), (240, 320)) images = simulate.render(env, state[:100]) NOISE = 0 new_images = simulate.add_noise_background(images, NOISE, NOISE, []) FN = 100 pylab.figure() pylab.subplot(2, 1, 1) pylab.plot(state['x'][:FN]) pylab.plot(state['y'][:FN]) pylab.subplot(2, 1, 2) pylab.scatter(positions['led_front'][:FN, 0], positions['led_front'][:FN, 1], c='g') pylab.scatter(positions['led_back'][:FN, 0], positions['led_back'][:FN, 1], c='r') pylab.show()