def run_simulation(c: CommonsSimulationConfiguration): initial_conditions, simulation_parameters = bootstrap_simulation(c) exp = Experiment() exp.append_configs( initial_state=initial_conditions, partial_state_update_blocks=partial_state_update_blocks, sim_configs=simulation_parameters ) # Do not use multi_proc, breaks ipdb.set_trace() exec_mode = ExecutionMode() single_proc_context = ExecutionContext(exec_mode.local_mode) executor = Executor(single_proc_context, configs) raw_system_events, tensor_field, sessions = executor.execute() df = pd.DataFrame(raw_system_events) df_final = df[df.substep.eq(2)] result = { "timestep": list(df_final["timestep"]), "funding_pool": list(df_final["funding_pool"]), "token_supply": list(df_final["token_supply"]), "collateral": list(df_final["collateral_pool"]), "sentiment": list(df_final["sentiment"]) } return result, df_final
def run_simulation(c: CommonsSimulationConfiguration): initial_conditions, simulation_parameters = bootstrap_simulation(c) exp = Experiment() exp.append_configs(initial_state=initial_conditions, partial_state_update_blocks=partial_state_update_blocks, sim_configs=simulation_parameters) # Do not use multi_proc, breaks ipdb.set_trace() exec_mode = ExecutionMode() single_proc_context = ExecutionContext(exec_mode.local_mode) executor = Executor(single_proc_context, configs) raw_system_events, tensor_field, sessions = executor.execute() df = pd.DataFrame(raw_system_events) return df