def setUp(self): _, test_table = build_block_model(rank=2, hoced=20, hsced=20, spar=2e3, C_=2e3, num_samples=50, num_features=500, mapping_on=False) feat_ids = ['F%d' % i for i in range(test_table.shape[0])] samp_ids = ['L%d' % i for i in range(test_table.shape[1])] self.test_table = Table(test_table, feat_ids, samp_ids)
def create_test_table(): _, test_table = build_block_model(rank=2, hoced=20, hsced=20, spar=2e3, C_=2e3, num_samples=50, num_features=500, mapping_on=False) # the rclr is tested in other places # this is just used as input into # the OptSpace tests test_table = np.array(test_table) table_rclr = rclr(test_table) return test_table, table_rclr
observed_table = niche_sort(otutabledf, mappingdf['host_num']) mappingdf=mappingdf.T[observed_table.index].T otutabledf=observed_table.copy() otutabledf.to_dense().to_csv("cluster_models/base_model_keyboard_table.csv",sep=',', encoding='utf-8') mappingdf.to_dense().to_csv("cluster_models/base_model_keyboard_meta.csv",sep=',', encoding='utf-8') ######### build the model ######### x0 = [3, 20, 20, 1e2, 1e2,1e1] bnds = ((3,3),(0,1e2),(0,2e3),(0,1e10),(0,5e1),(1,10)) model_fit=minimize_model(x0,bnds,np.array(otutabledf.T[:104].T.as_matrix())) base_truth,X_noise_sub=build_block_model(3, model_fit.x[1], model_fit.x[2], model_fit.x[3] , model_fit.x[4] ,otutabledf.shape[1] ,otutabledf.shape[0] ,overlap=model_fit.x[5] ,mapping_on=False) save_base=[] save_sub=[] for rank_,overlap_ in zip([2],[20]): #subsample_points=np.logspace(2,4,4) seq_depth={500:3.05e2, 1000:6.1e2, 2000:1.25e3, 4000:2.5e3, 10000:6.05e3} for sub_,model_peram in seq_depth.items():