예제 #1
0
def train_sequence_si():
    ks = [10, 20, 30]
    fecs = [[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]]

    logdir = 'modeldir/stage_all/seq_si/'

    from loss import FECLoss

    for i, k in enumerate(ks):
        for fec in fecs[i]:
            cfg = _allrun_config_si(k)
            cfg['lr'] = 0.00001
            cfg['batch'] = 64
            cfg['epochs'] = 200
            cfg['scheduler'] = True
            cfg['patience'] = 30
            cfg['step'] = 0

            if fec % 2 == 1:
                continue
            if fec == 0:
                cfg['criterion'] = torch.nn.BCELoss()
                cfg['model'] = 'resnet18b4_si_k%d' % (k)
            else:
                cfg['criterion'] = FECLoss(alpha=cfg['batch'] * fec)
                cfg['model'] = 'resnet18b4_si_k%d_fec%d' % (k, fec)

            cfg['model_dir'] = '%s/%s' % (logdir, cfg['model'])

            model = nn.DataParallel(sinet.SiNet(nblock=4, k=k).cuda())
            train.run_train(model, cfg)
예제 #2
0
파일: run.py 프로젝트: yl2019lw/FlyIT
def train_resnet_pj(s=2, k=10):
    cfg = util.default_cfg()
    cfg = train._config_pj_dataset(cfg, s, k)

    cfg['model'] = 'resnet_pj_k%d' % (k)
    cfg['model_dir'] = 'modeldir/stage%d/resnet_pj_k%d' % (s, k)

    model = nn.DataParallel(sinet.SiNet(nblock=4, k=k).cuda())
    cfg = train._train_config_pj(model, cfg)

    train.run_train(model, cfg)
예제 #3
0
파일: run.py 프로젝트: yl2019lw/FlyIT
def train_resnet_si(s=2, k=10, val_index=4):
    cfg = util.default_cfg()
    cfg = train._config_si_dataset(cfg, s, k)

    cfg['model'] = 'resnet_si_k%d_val%d' % (k, val_index)
    cfg['model_dir'] = 'modeldir/stage%d/resnet_si_k%d_val%d' % (s, k,
                                                                 val_index)

    model = nn.DataParallel(sinet.SiNet(nblock=4, k=k).cuda())
    cfg = train._train_config_si(model, cfg)

    train.run_train(model, cfg)
예제 #4
0
파일: run.py 프로젝트: yl2019lw/FlyIT
def train_resnet_stratify_si(s=2, k=10):
    cfg = util.default_cfg()
    cfg = train._config_stratify_si_dataset(cfg, s, k)
    # from loss import FECLoss
    # cfg['criterion'] = FECLoss(alpha=48)
    # from loss import SFocalLoss
    # cfg['criterion'] = SFocalLoss(gamma=1)

    model = nn.DataParallel(sinet.SiNet(nblock=2, k=k).cuda())
    cfg['model'] = 'resnet18b2_si_k%d' % (k)
    cfg['model_dir'] = 'modeldir/stage%d/resnet18b2_si_k%d' % (s, k)
    cfg = train._train_config_si(model, cfg)
    cfg['scheduler'] = False

    train.run_train(model, cfg)
예제 #5
0
def train_resnet_si(k=10):
    cfg = _allrun_config_si(k)
    from loss import FECLoss
    cfg['criterion'] = FECLoss(alpha=64)

    model = nn.DataParallel(sinet.SiNet(nblock=4, k=k).cuda())
    cfg['model'] = 'resnet18b4_si_k%d_fec1' % (k)
    cfg['model_dir'] = 'modeldir/stage_all/resnet18b4_si_k%d_fec1' % (k)
    cfg['lr'] = 0.0001

    model_pth = os.path.join(cfg['model_dir'], 'model.pth')
    if os.path.exists(model_pth):
        ckp = torch.load(model_pth)
        model.load_state_dict(ckp['model'])
        cfg['step'] = ckp['epoch'] + 1
        print("load pretrained model", model_pth, "start epoch:", cfg['step'])

    train.run_train(model, cfg)
예제 #6
0
파일: run.py 프로젝트: yl2019lw/FlyIT
def run_kfold_test(k=10):
    for s in [6, 5, 4, 3, 2]:
        test_dataset = dataset.SIDataset(mode='test', stage=s, k=k)

        s_dir = 'modeldir/stage%d' % s
        s_score = []
        s_label = []
        for val_index in [4, 3, 2, 1, 0]:
            m_dir = '%s/resnet_si_k%d_val%d' % (s_dir, k, val_index)

            model_pth = os.path.join(m_dir, 'model.pth')

            model = nn.DataParallel(sinet.SiNet(nblock=4, k=k).cuda())
            ckp = torch.load(model_pth)
            model.load_state_dict(ckp['model'])

            cfg = util.default_cfg()
            cfg['test'] = test_dataset
            cfg['batch'] = 128
            cfg['collate'] = default_collate
            cfg['instance'] = train._train_si
            cfg['model'] = m_dir

            np_score, np_label = train.run_test_score(model, cfg)
            s_score.append(np_score)
            s_label.append(np_label)

        m_score = np.mean(np.stack(s_score, axis=0), axis=0)
        print("m_score", m_score.shape, 'np_label', np_label.shape)
        np_pd = (m_score > 0.5).astype(np.int)

        mean_dir = '%s/resnet_si_k%d_mean' % (s_dir, k)
        if not os.path.exists(mean_dir):
            os.mkdir(mean_dir)
        pth = os.path.join(mean_dir, 'metrics.csv')
        util.write_metrics(pth, np_label, np_pd, np_score)