def load_camera_data(file_name): """Loads the camera data using the sintel SDK and converts to torch.Tensor. """ assert os.path.isfile(file_name), "Invalid file {}".format(file_name) import sintel_io intrinsic, extrinsic = sintel_io.cam_read(file_name) return intrinsic, extrinsic
def load_camera_data(file_name): """Load the camera data using the syntel SDK and converts to torch.Tensor.""" if not os.path.isfile(file_name): raise AssertionError(f"Invalid file {file_name}") import sintel_io intrinsic, extrinsic = sintel_io.cam_read(file_name) return intrinsic, extrinsic
import numpy as np from matplotlib import pyplot as plt import sys sys.path.append('../') import sintel_io as sio # Test and display some real data folder_name = 'alley_1' frame_no = 1 #smaller than 10 DEPTHFILE = '/cluster/scratch/takmaza/CVL/MPI-Sintel-complete/training/depth/' + folder_name + '/frame_000' + str( frame_no) + '.dpt' CAMFILE = '/cluster/scratch/takmaza/CVL/MPI-Sintel-complete/training/camdata_left/' + folder_name + '/frame_0001.cam' # Load data depth = sio.depth_read(DEPTHFILE) I, E = sio.cam_read(CAMFILE) print(depth.shape) # Display data #plt.figure() #plt.imshow(depth,cmap='gray') #plt.title('depth') print(I) print(E) #plt.show()
def get_K_Sintel(cam_folder, seq_folder, frame): I, E = sio.cam_read(cam_folder + seq_folder + '/frame_{:04d}.cam'.format(frame + 1)) return I