def __init__(self, total_batches, batch_size, num_layers=8, image_width=512, loss_coef=100, theta_initial=None, theta_hidden=None): super().__init__() # load clip self.loss_coef = loss_coef self.image_width = image_width self.batch_size = batch_size self.total_batches = total_batches self.num_batches_processed = 0 w0 = default(theta_hidden, 30.) w0_initial = default(theta_initial, 30.) siren = SirenNet(dim_in=2, dim_hidden=256, num_layers=num_layers, dim_out=3, use_bias=True, w0=w0, w0_initial=w0_initial) self.model = SirenWrapper(siren, image_width=image_width, image_height=image_width) self.generate_size_schedule()
def __init__( self, total_batches, batch_size, num_layers=8, image_width=512, loss_coef=100, ): super().__init__() self.loss_coef = loss_coef self.image_width = image_width self.batch_size = batch_size self.total_batches = total_batches self.num_batches_processed = 0 siren = SirenNet(dim_in=2, dim_hidden=256, num_layers=num_layers, dim_out=3, use_bias=True) self.model = SirenWrapper(siren, image_width=image_width, image_height=image_width) self.generate_size_schedule()
def __init__( self, total_batches, batch_size, num_layers=8, image_width=512, loss_coef=100, theta_initial=None, theta_hidden=None, lower_bound_cutout=0.1, # should be smaller than 0.8 upper_bound_cutout=1.0, saturate_bound=False, ): super().__init__() # load clip self.loss_coef = loss_coef self.image_width = image_width self.batch_size = batch_size self.total_batches = total_batches self.num_batches_processed = 0 w0 = default(theta_hidden, 30.) w0_initial = default(theta_initial, 30.) siren = SirenNet( dim_in=2, dim_hidden=256, num_layers=num_layers, dim_out=3, use_bias=True, w0=w0, w0_initial=w0_initial ) self.model = SirenWrapper( siren, image_width=image_width, image_height=image_width ) self.saturate_bound = saturate_bound self.saturate_limit = 0.75 # cutouts above this value lead to destabilization self.lower_bound_cutout = lower_bound_cutout self.upper_bound_cutout = upper_bound_cutout
def __init__( self, clip_perceptor, clip_norm, input_res, total_batches, batch_size, num_layers=8, image_width=512, loss_coef=100, theta_initial=None, theta_hidden=None, lower_bound_cutout=0.1, # should be smaller than 0.8 upper_bound_cutout=1.0, saturate_bound=False, gauss_sampling=False, gauss_mean=0.6, gauss_std=0.2, do_cutout=True, center_bias=False, center_focus=2, hidden_size=256, averaging_weight=0.3, ): super().__init__() # load clip self.perceptor = clip_perceptor self.input_resolution = input_res self.normalize_image = clip_norm self.loss_coef = loss_coef self.image_width = image_width self.batch_size = batch_size self.total_batches = total_batches self.num_batches_processed = 0 w0 = default(theta_hidden, 30.) w0_initial = default(theta_initial, 30.) siren = SirenNet(dim_in=2, dim_hidden=hidden_size, num_layers=num_layers, dim_out=1, use_bias=True, w0=w0, w0_initial=w0_initial) self.model = SirenWrapper(siren, image_width=image_width, image_height=image_width) self.saturate_bound = saturate_bound self.saturate_limit = 0.75 # cutouts above this value lead to destabilization self.lower_bound_cutout = lower_bound_cutout self.upper_bound_cutout = upper_bound_cutout self.gauss_sampling = gauss_sampling self.gauss_mean = gauss_mean self.gauss_std = gauss_std self.do_cutout = do_cutout self.center_bias = center_bias self.center_focus = center_focus self.averaging_weight = averaging_weight